全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MnCeOx@MgO催化剂上同步脱除NOx和氯苯的研究
Study on Simultaneous Removal of NOx and Chlorobenzene over MnCeOx@MgO Catalyst

DOI: 10.12677/HJCET.2022.124039, PP. 292-301

Keywords: MnCeOx@MgO,氮氧化物还原,氯苯氧化,同步脱除
MnCeOx@MgO
, NOx Reduction, Chlorobenzene Oxidation, Simultaneous Removal

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用水热法和共沉淀法分别制备了MnCeOx@MgO核壳催化剂和MnCeMgOx复合金属氧化物催化剂,通过催化活性评价和催化表征考察了MnCeOx@MgO催化剂和MnCeMgOx复合金属催化剂上同步脱除氮氧化物(NOx)和氯苯(CB)的构效关系。活性测试结果表明,MnCeOx@MgO核壳催化剂的催化活性强于MnCeMgOx复合金属氧化物催化剂,且MnCeOx@MgO核壳催化剂具有更宽的活性温度窗口。其中NOx和CB在MnCeOx@MgO核壳催化剂上的转化率分别在250℃和350℃达到77%和84%,NOx和CB在MnCeMgOx复合金属催化剂的转化效率分别为62.6% (200℃)和89% (350℃)。MnCeOx@MgO催化剂的活性与其物化结构、表面活性氧物种比值和过渡金属活性组分的形态有关。MnCeOx@MgO核壳催化剂的平均孔径和Olatt/Oads比值均大于MnCeMgOx复合金属催化剂,与催化活性成正相关。催化剂中活性组分分别为Mn2+、Mn3+、Mn4+、Ce3+
MnCeOx@MgO core-shell catalyst and MnCeMgOx composite catalyst were prepared by hydrothermal method and coprecipitation method, respectively. Structure-activity relationship in simultaneous removal of NOx and chlorobenzene (CB) on MnCeOx@MgO and MnCeMgOx catalysts was investigated by catalytic activity test and characterization. The results show that the activity of MnCe-Ox@MgO catalyst is higher than that of MnCeMgOx catalyst. For MnCeOx@MgO core-shell catalyst, the conversion of NOx and CB was 77% and 84% at 250?C and 350?C, respectively. For MnCeMgOx composite catalyst, the conversion of NOx and CB was 62.6% and 89% at 200?C and 350?C, respectively. The activity of MnCeOx@MgO catalyst is related to its physicochemical structure, surface active oxygen species ratio and the morphology of transition metal active components. Both average pore size and Olatt/Oads ratio of MnCeOx@MgO catalysts are higher than those of MnCeMgOx catalysts, which were positively correlated with the catalytic activity. The active components in MnCeOx@MgO catalyst are Mn2+, Mn3+, Mn4+, Ce3+ respectively.

References

[1]  Huang, X., Wang, D., Yang, Q., Peng, Y. and Li, J. (2021) Multi-Pollutant Control (MPC) of NO and Chlorobenzene from Industrial Furnaces Using a Vanadia-Based SCR Catalyst. Applied Catalysis B: Environmental, 285, Article ID: 119835.
https://doi.org/10.1016/j.apcatb.2020.119835
[2]  Li, J., He, H., Hu, C. and Zhao, J. (2013) The Abatement of Major Pollutants in Air and Water by Environmental Catalysis. Frontiers of Environmental Science & Engineering, 7, 302-325.
https://doi.org/10.1007/s11783-013-0511-6
[3]  Everaert, K. and Baeyens, J. (2004) Removal of PCDD/F from Flue Gases in Fixed or Moving Bed Adsorbers. Waste Management, 24, 37-42.
https://doi.org/10.1016/S0956-053X(03)00136-3
[4]  Stuart, H., Taylor, S.H., Heneghan, C.S., Hutchings, G.J. and Hudson, I.D. (2000) The Activity and Mechanism of Uranium Oxide Catalysts for the Oxidative Destruction of Volatile Organic Compounds. Catalysis Today, 59, 249-259.
https://doi.org/10.1016/S0920-5861(00)00291-1
[5]  Forzatti, P. and Lietti, L. (1999) Catalyst Deactivation. Catalysis Today, 52, 165-181.
https://doi.org/10.1016/S0920-5861(99)00074-7
[6]  Weng, X., Sun, P., Long, Y., Meng, Q. and Wu, Z. (2017) Catalytic Oxidation of Chlorobenzene over MnxCe1-xO2/HZSM-5 Catalysts: A Study with Practical Implications. Environmental Science & Technology, 51, 8057-8066.
https://doi.org/10.1021/acs.est.6b06585
[7]  Gallastegi-Villa, M., Aranzabal, A., Gonzalez-Marcos, J.A. and Gonzalez-Velasco, J.R. (2016) Metal-Loaded ZSM5 Zeolites for Catalytic Purification of Dioxin/Furans and NOx Containing Exhaust Gases from MWI Plants: Effect of Different Metal Cations. Applied Catalysis B: Environmental, 184, 238-245.
https://doi.org/10.1016/j.apcatb.2015.11.006
[8]  Zhang, P., Lu, H., Zhou, Y., Zhang, L., Wu, Z., Yang, S., Shi, H., Zhu, Q., Chen, Y. and Dai, S. (2015) Mesoporous MnCeOx Solid Solutions for Low Temperature And Selective Oxidation of Hydrocarbons. Nature Communications, 6, Article No. 8446.
https://doi.org/10.1038/ncomms9446
[9]  Delimaris, D. and Ioannides, T. (2008) VOC Oxidation over MnOx-CeO2 Catalysts Prepared by a Combustion Method. Applied Catalysis B: Environmental, 84, 303-312.
https://doi.org/10.1016/j.apcatb.2008.04.006
[10]  Gan, L., Wang, Y., Chen, J., Yan, T., Li, J., Crittenden, J. and Peng, Y. (2019) The Synergistic Mechanism of NOx and Chlorobenzene Degradation in Municipal Solid Waste Incinerators. Catalysis Science & Technology, 9, 4286-4292.
https://doi.org/10.1039/C9CY01157A
[11]  Jampaiah, D., Ippolito, S.J., Sabri, Y.M., Reddy, B.M. and Bhargava, S.K. (2015) Highly Efficient Nanosized Mn and Fe Codoped Ceria-Based Solid Solutions for Elemental Mercury Removal at Low Flue Gas Temperatures. Catalysis Science & Technology, 5, 2913-2924.
https://doi.org/10.1039/C5CY00231A
[12]  Venkataswamy, P., Rao, K.N., Jampaiah, D. and Reddy, B.M. (2015) Nanostructured Manganese Doped Ceria Solid Solutions for CO Oxidation at Lower Temperatures. Applied Catalysis B: Environmental, 162, 122-132.
https://doi.org/10.1016/j.apcatb.2014.06.038
[13]  Han, J., Meeprasert, J., Maitarad, P., Nammuangruk, S., Shi, L. and Zhang, D. (2016) Investigation of the Facet-Dependent Catalytic Performance of Fe2O3/CeO2 for the Selective Catalytic Reduction of NO with NH3. The Journal of Physical Chemistry C, 120, 1523-1533.
https://doi.org/10.1021/acs.jpcc.5b09834
[14]  Pan, H., Jian, Y. and Chen C. (2017) Sphere-Shaped Mn3O4 Catalyst with Remarkable Low-Temperature Activity for Methyl-Ethyl-Ketone Combustion. Environmental Science & Technology, 51, 6288-6297.
https://doi.org/10.1021/acs.est.7b00136
[15]  仲蕾. 铬基催化剂的制备及其催化氧化NO的性能研究[D]: [博士学位论文]. 南京: 南京理工大学, 2016.
[16]  任丽丽. 担载型分子筛催化剂上CH4选择还原NO反应的研究[D]: [博士学位论文]. 大连: 中国科学院大连化学物理研究所, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133