|
p53基因与肿瘤的研究进展
|
Abstract:
目前临床研究表明,p53基因的主要作用是识别细胞损伤从而诱导细胞凋亡,该基因突变可能导致许多肿瘤发生发展。尤其在肺癌中,p53基因突变是NSCLC存活率降低的独立预后因素,并且基因突变可导致EGFR-TKI耐药,但是在免疫治疗方面等影响尚未明确。p53基因突变往往伴随着p53蛋白构象的改变。已发现AZD1775、APR-246等小分子可能有恢复p53野生型构象并重建其正常功能的作用。在这篇综述中,我们总结了p53基因目前的一些研究观点及研究进展,希望对临床肿瘤的治疗有所帮助。
Current clinical studies have shown that the main role of p53 gene is to recognize cell damage and induce apoptosis, and the mutation of this gene may lead to the occurrence and development of many tumors. Especially in lung cancer, p53 gene mutation is an independent prognostic factor of reduced survival rate of NSCLC, and gene mutation can lead to EGFR-TKI resistance, but the effect on immunotherapy is not clear. P53 gene mutations are often accompanied by conformation changes of p53 protein. It has been found that AZD1775, APR-246 and other small molecules may restore the wild-type conformation of p53 and restore its normal function. In this review, we summarize some current research views and progress of p53 gene, hoping to be helpful for the treatment of clinical tumors.
[1] | Salim, K.Y., Maleki Vareki, S., Danter, W.R. and Koropatnick, J. (2016) COTI-2, a Novel Small Molecule That Is Active against Multiple Human Cancer Cell Lines in Vitro and in Vivo. Oncotarget, 7, 41363-41379.
https://doi.org/10.18632/oncotarget.9133 |
[2] | Surget, S., Khoury, M.P. and Bourdon, J.C. (2013) Uncovering the Role of p53 Splice Variants in Human Malignancy: A Clinical Perspective. OncoTargets and Therapy, 7, 57-68. https://doi.org/10.2147/OTT.S53876 |
[3] | Wang, Z. and Sun, Y. (2010) Targeting p53 for Novel Anticancer Therapy. Translational Oncology, 3, 1-12.
https://doi.org/10.1593/tlo.09250 |
[4] | Xu, J., Wang, J., Hu Y., et al. (2014) Unequal Prognostic Potentials of p53 Gain-of-Function Mutations in Human Cancers Associate with Drug-Metabolizing Activity. Cell Death & Disease, 5, e1108.
https://doi.org/10.1038/cddis.2014.75 |
[5] | Marcel, V., Dichtel-Danjoy, M.L., Sagne, C., et al. (2011) Biological Functions of p53 Is Forms through Evolution: Lessons from Animal and Cellular Models. Cell Death & Differentiation, 18, 1815-1824.
https://doi.org/10.1038/cdd.2011.120 |
[6] | Khoury, M.P. and Bourdon, J.C. (2010) The Isoforms of the p53 Protein. Cold Spring Harbor Perspectives in Biology, 2, a000927. https://doi.org/10.1101/cshperspect.a000927 |
[7] | Bai, L. and Zhu, W. (2006) p53: Structure, Function and Therapeutic Application. Journal of Cancer Molecules, 2, 141-153. |
[8] | Chiang, M.F., Chou, P.Y., Wang, W.J., et al. (2013) Tumor Suppressor WWOX and p53 Alterations and Drug Resistance in Glioblastomas. Frontiers in Oncology, 3, Article No. 43. https://doi.org/10.3389/fonc.2013.00043 |
[9] | Bai, L. and Wang, S. (2014) Targeting Apoptosis Pathways for New Cancer Therapeutics. Annual Review of Medicine, 65, 139-155. https://doi.org/10.1146/annurev-med-010713-141310 |
[10] | Kastenhuber, E.R. and Lowe, S.W. (2017) Putting p53 in Context. Cell, 170, 1062-1078.
https://doi.org/10.1016/j.cell.2017.08.028 |
[11] | Watson, I.R., Takahashi, K., Futreal, P.A., et al. (2013) Emerging Patterns of Somatic Mutations in Cancer. Nature Reviews Genetics, 14, 703-718. https://doi.org/10.1038/nrg3539 |
[12] | Zhang, J., Ding, L., Holmfeldt, L., et al. (2012) The Genetic Basis of Early T-Cell Precursor Acute Lymphoblastic Leukaemia. Nature, 481, 157-163. |
[13] | Wang, S., Zhao, Y., Bernard, D., Aguilar, A. and Kumar, S. (2012) Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapeutics. Topics in Medicinal Chemistry, 8, 57-80.
https://doi.org/10.1007/978-3-642-28965-1_2 |
[14] | Muller, P.A. and Vousden, K.H. (2013) p53 Mutations in Cancer. Nature Cell Biology, 15, 2-8.
https://doi.org/10.1038/ncb2641 |
[15] | Hegi, M.E., Diserens, A.C., Gorlia, T., et al. (2005) MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. The New England Journal of Medicine, 352, 997-1003. https://doi.org/10.1056/NEJMoa043331 |
[16] | Willis, A., Jung, E.J., Wakefield, T., et al. (2019) Mutant p53 Exerts a Dominant Negative Effect by Preventing Wild-Type p53 from Binding to the Promoter of Its Target Genes. Oncogene, 23, 2330-2338.
https://doi.org/10.1038/sj.onc.1207396 |
[17] | Oren, M. and Rotter, V. (2010) Mutant p53 Gain-of-Function in Cancer. Cold Spring Harbor Perspectives in Biology, 2, a001107. https://doi.org/10.1101/cshperspect.a001107 |
[18] | Strano, S., Dell’Orso, S., DiAgostino, S., et al. (2007) Mutant p53: An Oncogenic Transcription Factor. Oncogene, 26, 2212-2219. https://doi.org/10.1038/sj.onc.1210296 |
[19] | Gaiddon, C., Lokshin, M., Ahn, et al. (2001) A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain. Molecular and Cellular Biology, 21, 1874-1887.
https://doi.org/10.1128/MCB.21.5.1874-1887.2001 |
[20] | Chang, T.C., Wentzel, E.A., Kent, O.A., et al. (2007) Transactivation of miR-34a by p53 Broadly Influences Gene Expression and Promotes Apoptosis. Molecular Cell, 26, 745-752. https://doi.org/10.1016/j.molcel.2007.05.010 |
[21] | Tarasov, V., Jung, P., Verdoodt, B., et al. (2007) Differential Regulation of Micro-RNAs by p53 Revealed by Massively Parallel Sequencing: Mir-34a Is a p53 Target That Induces Apoptosis and G1-Arrest. Cell Cycle, 6, 1586-1593.
https://doi.org/10.4161/cc.6.13.4436 |
[22] | Donzelli, S., Fontemaggi, G., Fazi, F., et al. (2012) MicroRNA-128-2 Targets the Transcriptional Repressor E2F5 Enhancing Mutant p53 Gain of Function. Cell Death & Differentiation, 19, 1038-1048.
https://doi.org/10.1038/cdd.2011.190 |
[23] | Masciarelli, S., Fontemaggi, G., Di Agostino, S., et al. (2014) Gain-of-Function Mutant p53 Downregulates miR-223 Contributing to Chemoresistance of Cultured Tumor Cells. Oncogene, 33, 1601-1608.
https://doi.org/10.1038/onc.2013.106 |
[24] | Dong, P., Karaayvaz, M., Jia, N., et al. (2013) Mutant p53 Gain-of-Function Induces Epithelial-Mesenchymal Transition through Modulation of the miR-130b-ZEB1 Axis. Oncogene, 32, 3286-3295. https://doi.org/10.1038/onc.2012.334 |
[25] | Wang, W., Cheng, B., Miao, L., et al. (2013) Mutant p53-R273H Gains New Function in Sustained Activation of EGFR Signaling via Suppressing miR-27a Expression. Cell Death & Disease, 4, e574.
https://doi.org/10.1038/cddis.2013.97 |
[26] | Neilsen, P.M., Noll, J.E., Mattiske, S., et al. (2013) Mutant p53 Drives Invasion in Breast Tumors through Up-Regulation of miR-155. Oncogene, 32, 2992-3000. https://doi.org/10.1038/onc.2012.305 |
[27] | Siegel, R., Naishadham, D. and Jemal, A. (2013) Cancer Sstatistics, 2013. CA: A Cancer Journal for Clinicians, 63, 11-30. https://doi.org/10.3322/caac.21166 |
[28] | Davidson, M.R., Gazdar, A.F. and Clarke, B.E. (2013) The Pivotal Role of Pathology in the Management of Lung Cancer. Journal of Thoracic Disease, 5, S463-S478. |
[29] | VanderLaan, P.A., Rangachari, D., Mockus, S.M., et al. (2017) Mutations in TP53, PIK3CA, PTEN and Other Genes in EGFR Mutated Lung Cancers: Correlation with Clinical Outcomes. Lung Cancer, 106, 17-21.
https://doi.org/10.1016/j.lungcan.2017.01.011 |
[30] | Molina-Vila, M.A., Bertran-Alamillo, J., Gasco, A., et al. (2014) Nondisruptive p53 Mutations Are Associated with Shorter Survival in Patients with Advanced Non-Small Cell Lung Cancer. Clinical Cancer Research, 20, 4647-4659.
https://doi.org/10.1158/1078-0432.CCR-13-2391 |
[31] | Yu, H., Suzawa, K., Jordan, E.J., et al. (2018) Concurrent Alterations in EGFR-Mutant Lung Cancers Associated with Resistance to EGFR Kinase Inhibitors and Characterization of MTOR as a Mediator of Resistance. Clinical Cancer Research, 24, 3108-3118. https://doi.org/10.1158/1078-0432.CCR-17-2961 |
[32] | Xu, Y., Tong, X., Yan, J., et al. (2018) Short-Term Responders of Non-Small Cell Lung Cancer Patients to EGFR Tyrosine Kinase Inhibitors Display High Prevalence of TP53 Mutations and Primary Resistance Mechanisms. Translational Oncology, 11, 1364-1369. https://doi.org/10.1016/j.tranon.2018.08.010 |
[33] | Labbé, C., Cabanero, M., Korpanty, G.J., et al. (2017) Prognostic and Predictive Effects of TP53 Co-Mutation in Patients with EGFR-Mutated Non-Small Cell Lung Cancer (NSCLC). Lung Cancer, 111, 23-29.
https://doi.org/10.1016/j.lungcan.2017.06.014 |
[34] | Jiao, X., Qin, B., You, P., et al. (2018) The Prognostic Value of TP53 and Its Correlation with EGFR Mutation in Advanced Non-Small Cell Lung Cancer, an Analysis Based on cBioPortal Data Base. Lung Cancer, 123, 70-75.
https://doi.org/10.1016/j.lungcan.2018.07.003 |
[35] | Jin, K.R., Yun, J.C., Ryoo, B.Y., et al. (2007) p53 Enhances Gefitinib-Induced Growth Inhibition and Apoptosis by Regulation of FAS in Non-Small Cell Lung Cancer. Cancer Research, 67, 1163-1169.
https://doi.org/10.1158/0008-5472.CAN-06-2037 |
[36] | Kim, G., Ouzounova, M., Quraishi, A.A., et al. (2015) SOCS3-Mediated Regulation of Inflammatory Cytokines in PTEN and p53 Inactivated Triple Negative Breast Cancer Model. Oncogene, 34, 671-680.
https://doi.org/10.1038/onc.2014.4 |
[37] | Lee, J.K., Lee, J., Kim, S., et al. (2017) Clonal History and Genetic Predictors of Transformation into Small-Cell Carcinomas from Lung Adenocarcinomas. Journal of Clinical Oncology, 35, 3065-3074.
https://doi.org/10.1200/JCO.2016.71.9096 |
[38] | Zitvogel, L. and Kroemer, G. (2015) Cancer. A p53-Regulated Immune Checkpoint Relevant to Cancer. Science, 349, 476-477. https://doi.org/10.1126/science.aac8475 |
[39] | Jiang, Z., Liu, Z., Li, M., et al. (2018) Immunogenomics Analysis Reveals That TP53 Mutations Inhibit Tumor Immunity in Gastric Cancer. Translational Oncology, 11, 1171-1187. https://doi.org/10.1016/j.tranon.2018.07.012 |
[40] | Xiao, W., Du, N., Huang, T., et al. (2018) TP53 Mutation as Potential Negative Predictor for Response of anti-CTLA-4 Therapy in Metastatic Melanoma. EBio Medicine, 32, 119-124. https://doi.org/10.1016/j.ebiom.2018.05.019 |
[41] | Dong, Z.Y., Zhong, W.Z., Zhang, X.C., et al. (2017) Potential Predictive Value of TP53 and KRAS Mutation Status for Response to PD-1 Blockade Immunotherapy in Lung Adenocar-Cinoma. Clinical Cancer Research, 23, 3012-3024.
https://doi.org/10.1158/1078-0432.CCR-16-2554 |
[42] | Liu, Z., Jiang, Z., Gao, Y., et al. (2019) TP53 Mutations Promote Immunogenic Activity in Breast Cancer. Journal of Oncology, 2, 1-19. https://doi.org/10.1155/2019/5952836 |
[43] | Li, L., Li, M. and Wang, X. (2020) Cancer Type-Dependent Correlations between TP53 Mutations and Antitumor Immunity. DNA Repair, 24, 88. https://doi.org/10.1016/j.dnarep.2020.102785 |
[44] | Cortez, M.A., Ivan, C., Valdecanas, D., et al. (2016) PDL1 Regulation by p53 via miR-34. Journal of the National Cancer Institute, 108, djv303. https://doi.org/10.1093/jnci/djv303 |
[45] | Ku, B.M., Bae, Y.H., Koh, J., et al. (2017) Mutational Status of TP53 Defines the Efficacy of Wee1 Inhibitor AZD1775 in KRAS-Mutant Non-Small Cell Lung Cancer. Oncotarget, 8, 67526-67537.
https://doi.org/10.18632/oncotarget.18728 |
[46] | Lambert, J.M., Gorzov, P., Veprintsev, D.B., et al. (2009) PRIMA-1 Reactivates Mutant p53 by Covalent Binding to the Core Domain. Cancer Cell, 15, 376-388. https://doi.org/10.1016/j.ccr.2009.03.003 |
[47] | Peng, X., et al. (2013) APR-246/PRIMA-1MET Inhibits Thioredoxin Reductase 1 and Converts the Enzyme to a Dedicated NADPH Oxidase. Cell Death & Disease, 24, e881. https://doi.org/10.1038/cddis.2013.417 |
[48] | Lindemann, A., Patel, A.A., Silver, N.L., et al. (2019) COTI-2, A Novel Thiosemicarbazone Derivative, Exhibits Antitumor Activity in HNSCC through p53-Dependent and Independent Mechanisms. Clinical Cancer Research, 25, 5650-566. https://doi.org/10.1158/1078-0432.CCR-19-0096 |
[49] | Ali, D., Mohammad, D.K., Mujahed, H., et al. (2016) Anti-Leukaemic Effects Induced by APR-246 Are Dependent on Induction of Oxidative Stress and the NFE2L2/HMOX1 Axis That Can Be Targeted by PI3K and mTOR Inhibitors in Acute Myeloid Leukaemia Cells. British Journal of Haematology, 174, 117-126. https://doi.org/10.1111/bjh.14036 |