全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进最小二乘法的无人机轨迹预测研究
Research on UAV Trajectory Prediction Based on Improved Least Squares Method

DOI: 10.12677/MOS.2022.114103, PP. 1131-1142

Keywords: 无人机,轨迹预测,BP神经网络,最小二乘法
UAV
, Trajectory Prediction, BP Neural Network, Least Square Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

高效精确地对无人机飞行轨迹进行预测是无人机领域的关键技术之一。针对现在无人机飞行轨迹预测方法的预测精度不足的问题,本文在进行大地坐标与空间直角坐标转换的基础上,提出一种基于最小二乘的无人机飞行轨迹预测算法,在无人机的飞行过程中,该算法能够不间断地更新轨迹数据并拟合飞行轨迹方程,从而达到对飞行轨迹的精确预测。仿真实验结果表明,所提出的轨迹预测算法误差可控制在0.5 m以内,相比较于BP神经网络预测模型,该算法的可靠性和精度更优。
Efficient and accurate prediction of UAV flight trajectory is one of the key technologies in the field of UAV. To address the problem of insufficient prediction accuracy of current UAV flight trajectory prediction methods, this paper proposes a least squares-based UAV flight trajectory prediction algorithm based on the conversion of geodetic coordinates and spatial Cartesian coordinates, which can uninterruptedly update the trajectory data and fit the flight trajectory equation during the flight of UAV, so as to achieve accurate prediction of flight trajectory. The simulation experimental results show that the error of the proposed trajectory prediction algorithm can be controlled within 0.5 m, and the reliability and accuracy of the algorithm is better compared with the BP neural network prediction model.

References

[1]  张宏鹏, 黄长强, 唐上钦, 轩永波. 基于卷积神经网络的无人作战飞机飞行轨迹实时预测[J]. 兵工学报, 2020, 41(9): 1894-1903.
[2]  Qi, L. and Zheng, Z. (2016) Trajectory Prediction of Vessels Based on Data Mining and Machine Learning. Journal of Digital Information Management, 14, 33-40.
[3]  Feng, Z.N. and Zhu, Y.M. (2016) A Survey on Trajectory Data Mining: Techniques and Applications. IEEE Access, 4, 2056-2067.
https://doi.org/10.1109/ACCESS.2016.2553681
[4]  Choi, H.C., Deng, C. and Hwang, I. (2021) Hybrid Machine Learning and Estimation-Based Flight Trajectory Prediction in Terminal Airspace. IEEE ACCESS, 9, 151186-151197.
https://doi.org/10.1109/ACCESS.2021.3126117
[5]  Shi, Z., Xu, M. and Pan, Q, (2020) 4-D Flight Trajectory Prediction with Constrained LSTM Network. IEEE Transactions on Intelligent Transportation Systems, 22, 7242-7255.
https://doi.org/10.1109/TITS.2020.3004807
[6]  Baklacioglu, T. and Cavcar, M. (2014) Aero-Propulsive Modelling for Climb and Descent Trajectory Prediction Transport Aircraft Using Genetic Algorithms. The Aeronautical Journal, 118, 65-79.
https://doi.org/10.1017/S0001924000008939
[7]  王涛波, 黄宝军. 基于改进卡尔曼滤波的四维飞行航迹预测模型[J]. 计算机应用, 2014, 34(6): 1812-1815.
[8]  任雅奇. 基于GPS数据的中国地壳运动速度场模型的建立[D]: [硕士学位论文]. 郑州, 洛阳: 解放军信息工程大学, 2012.
[9]  徐肖豪, 杨国庆, 刘建国. 空管中飞行轨迹预测算法的比较研究[J]. 中国民航大学学报, 2001, 19(6):1-6.
[10]  Chen, H.X. (2015) Research on Multi-Sensor Data Fusion Technology Based on BP Neural Network. 2015 International Workshop on Wireless Communication and Network, Kunming, 21-23 August 2015, 265-269.
https://doi.org/10.1142/9789814733663_0006
[11]  甄荣, 金永兴, 胡勤友, 施朝健, 王胜正. 基于AIS信息和BP神经网络的船舶航行行为预测[J]. 中国航海, 2017, 40(2): 6-10.
[12]  李蓓蕾. 多次自适应最小二乘曲线拟合方法及其应用[D]: [硕士学位论文]. 荆州: 长江大学, 2014: 6-25.
[13]  石凯. 无人机禁飞区预警技术研究[D]: [硕士学位论文]. 成都: 电子科技大学, 2017.
[14]  骆宗万, 曹良中, 余芳滨, 张雨霏. 基于布尔莎模型两种坐标系转换的实现与应用[J]. 绿色科技, 2022, 24(2): 226-229.
https://doi.org/10.16663/j.cnki.lskj.2022.02.060
[15]  张强, 张振标. 基于曲线拟合的机动目标轨迹预测算法研究[J]. 信息化研究, 2018, 44(6): 12-15+30.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133