全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于共轭梯度的脉冲噪声去噪算法
Impulse Noise Denoising Algorithm Based on Conjugate Gradient

DOI: 10.12677/JISP.2022.113014, PP. 125-133

Keywords: 共轭梯度,收敛性,脉冲噪声去噪
Conjugate Gradient
, Convergence, Impulse Noise Denoising

Full-Text   Cite this paper   Add to My Lib

Abstract:

共轭梯度法是数值计算领域的一类重要方法。本文基于Schmidt正交化方法,提出了两种改进的Hestenes-Stiefel共轭梯度法。无需线搜索条件,它们自动满足共轭梯度法的两个重要性质,即充分下降性和共轭条件。在适当的条件下,本文证明了所设计算法的全局收敛性。最后,将这两种算法应用到脉冲噪声去噪中,初步的数值试验表明了算法的有效性。
Conjugate gradient method is an important method in numerical computation. Based on Schmidt orthogonalization, two improved Hestenes-Stiefel conjugate gradient methods are proposed in this paper. Without line search conditions, they automatically satisfy two important properties of the conjugate gradient method, namely, sufficient descent and conjugate conditions. Under appropriate conditions, the global convergence of the proposed algorithm is proved. Finally, the two algorithms are applied to impulse noise denoising, and preliminary numerical experiments show the effectiveness of the algorithm.

References

[1]  马昌凤. 最优化方法及其Matlab程序设计[M]. 北京: 科学出版社, 2010: 87-108.
[2]  王宜举, 修乃华. 非线性最优化理论与方法[M]. 北京: 科学出版社, 2011: 112-134.
[3]  戴彧虹, 袁亚湘. 非线性共轭梯度法[M]. 上海: 上海科学技术出版社, 2000: 1-32.
[4]  Hager, W.W. and Zhang, H.C. (2005) A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search. SIAM Journal on Optimization, 16, 170-192.
https://doi.org/10.1137/030601880
[5]  Zhang, L., Zhou, W.J. and Li, D.H. (2006) A Descent Modified Polak-Ribière-Polyak Conjugate Gradient Method and Its Global Convergence. IMA Journal of Numerical Analysis, 26, 629-640.
https://doi.org/10.1093/imanum/drl016
[6]  Cheng, W.Y. (2007) A Two-Term PRP-Based Descent Method. Numerical Functional Analysis and Optimization, 28, 1217-1230.
https://doi.org/10.1080/01630560701749524
[7]  Sun, M. and Bai, Q.G. (2011) A New Descent Memory Gradient Method and Its Global Convergence. Journal of Systems Science and Complexity, 24, Article No. 784.
https://doi.org/10.1007/s11424-011-8150-0
[8]  Cai, J.F., Chan, R.H. and Fiore, C.D. (2007) Minimization of a Detail-Preserving Regularization Functional for Impulse Noise Removal. Journal of Mathematical Imaging and Vision, 29, 79-91.
https://doi.org/10.1007/s10851-007-0027-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133