|
基于深度学习的遥感影像建筑物提取方法研究
|
Abstract:
随着遥感技术的不断发展,遥感影像数据中包含的地物信息越来越丰富,因此被广泛应用于土地信息变化、灾害检测、环境评估等各个领域。建筑物作为主要的地表地物之一,同时是人类活动的主要场所,与人口和经济密切相关,被广泛应用于城市规划、智慧城市建设等各个方面。然而传统的建筑物提取方法耗时耗力,因此使用以卷积神经网络为基础的深度学习方法成为遥感图像处理的主流方法。本文在参考了国内外建筑物提取方法研究的文献后,采用Unet++的网络模型进行建筑物提取,并根据IoU、kappa系数以及F1这三个精度指标,评价其提取结果。
With the continuous development of remote sensing technology, the ground object information contained in remote sensing image data is more and more abundant, so it is widely used in various fields such as land information change, disaster detection, and environmental assessment. As one of the main surface features and the main place for human activities, buildings are closely related to population and economy, and are widely used in urban planning, smart city construction and other aspects. However, traditional building extraction methods are time-consuming and labor-intensive, so the use of deep learning methods based on convolutional neural networks has become the mainstream method for remote sensing image processing. In this paper, after referring to the literature on building extraction methods at home and abroad, the network model of Unet++ is used to extract buildings, and the extraction results are evaluated according to the three accuracy indicators of IoU, kappa coefficient and F1.
[1] | 张浩然, 赵江洪, 张晓光. 利用U-net网络的高分遥感影像建筑提取方法[J]. 遥感信息, 2020, 35(3): 143-150. |
[2] | 崔卫红, 熊宝玉, 张丽瑶. 多尺度全卷积神经网络建筑物提取[J]. 测绘学报, 2019, 48(5): 597-608. |
[3] | Sun, X., Lin, X., Shen, S., et al. (2017) High-Resolution Remote Sensing Data Classification over Urban Areas Using Random Forest Ensemble and Fully Connected Conditional Random Field. International Journal of Geo-Information, 6, 245. https://doi.org/10.3390/ijgi6080245 |
[4] | 王卓, 闫浩文, 禄小敏, 等. 一种改进U-Net的高分辨率遥感影像道路提取方法[J]. 遥感技术与应用, 2020, 35(4): 8. |
[5] | Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer.
https://doi.org/10.1007/978-3-319-24574-4_28 |
[6] | Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., et al. (2018) UNet++: A Nested U-Net Architecture for Medical Image Segmentation. Proceedings of the 4th Deep Learning in Med-ical Image Analysis (DLMIA) Workshop.
https://doi.org/10.1007/978-3-030-00889-5_1 |
[7] | 张海川, 彭博, 许伟强. 基于UNet++及条件生成对抗网络的道路裂缝检测[J]. 计算机应用, 2020, 40(S2): 158-161. |
[8] | 王红霞, 周家奇, 辜承昊, 等. 用于图像分类的卷积神经网络中激活函数的设计[J]. 浙江大学学报(工学版), 2019, 53(7): 1363-1373. |
[9] | 范荣双, 陈洋, 徐启恒, 王竞雪. 基于深度学习的高分辨率遥感影像建筑物提取方法[J]. 测绘学报, 2019, 48(1): 34-41. |
[10] | 吕道双, 林娜, 张小青. 面向对象的多尺度多特征高分遥感影像建筑物提取[J]. 北京测绘, 2019, 33(2): 191-195. |
[11] | 于洋, 施国武, 刘斌, 等. 基于全卷积神经网络的无人机影像建筑物提取[J]. 水利水电技术, 2020, 51(7): 31-38. |
[12] | 黄一昕, 方文珊, 刘传朋, 等. 基于改进U-Net网络的铁路周边无人机影像建筑物提取方法研究[J]. 铁道建筑, 2021, 61(11): 158-163. |
[13] | 杨珍. 基于改进Unet模型的别墅自动提取[J]. 测绘与空间地理信息, 2022, 45(5): 1-6. |