|
基于四种人工智能模型的极端干旱区参考作物蒸散量研究
|
Abstract:
本文利用新疆维吾尔自治区阿克苏市气象站点的逐日气象数据,通过支持向量机(SVM)、高斯过程回归(GPR)、提升树(BT)以及BP神经网络(BPNN)四种人工智能算法模型,对1978~2018年极端干旱区的参考作物蒸散量(ET0)进行模拟,结果表明:1) 当输入气象因子相同时,SVM、GPR和BPNN的模型精度较高且较为接近,相比之下BT模型的精度稍差;四种人工智能模型当全部因子(Tmax, Tmin, Rmean, n, u2, Ra)输入时模拟精度最好,其中GPR模型精度最高;当只输入4种气象因子时,各模型在组合4 (Tmax, Tmin, u2, Ra)条件下的模拟精度较高,其中BPNN模型的模拟效果最好,为极端干旱区的模拟ET0首选模型。2) 就季节尺度而言,BPNN模型对秋季ET0模拟效果最好,而对夏季ET0的模拟效果最差。3) 与传统经验公式Hargreaves、Irmark-Allen、Jensen-Haise、Makkink相比,人工智能模型在模拟ET0时有明显的优势。
In order to simulate the crop evapotranspiration (ET0) in extreme arid areas from 1978 to 2018, based on daily gauge observations from Aksu, Xinjiang Uygur Autonomous Region, four artificial intelligence algorithm models including Support Vector Machine (SVM), Gaussian Process Regression (GPR), Boosting Tree (BT), and BP Neural Network (BPNN) are established. The results suggest that: 1) Compared with the result of BT, when the input meteorological factors are the same, the SVM, GPR, and BPNN show the higher and closer accuracy, BT’s result is weaker than other models. The four models exhibit the highest accuracy when the input factors are complete (Tmax, Tmin, Rmean, n, u2, Ra), and GPR is the best among them. When the number of the input factors is four, the accuracy under combination-4 (Tmax, Tmin, u2, Ra) is superior, and the simulation effect of BPNN is the best, so it is the favored model to simulate the ET0 in extreme arid areas. 2) On the seasonal scale, the BPNN demonstrates the highest simulation accuracy in autumn and the lowest accuracy occurs in summer. 3) Compared with the traditional empirical formulas involving Hargreaves, Irmark Allen, Jensen Haise, and Makkink, the artificial intelligence model has obvious advantages in simulating ET0.
[1] | 张泉. 作物需水量及灌溉需水量趋势性分析及方法[J]. 河南水利与南水北调, 2021, 50(6): 81-83. |
[2] | 贾悦, 王凤春, 高悦, 李鹏程. 河北省典型区域典型作物ET估算方法研究[J]. 水利水电技术, 2020, 51(11): 68-77. |
[3] | 鲍玲玲, 杨永刚, 刘建军, 张卫华. 基于5种人工智能模型计算重庆地区参考作物蒸散量[J]. 水土保持研究, 2021, 28(1): 85-92. |
[4] | 冯禹, 崔宁博, 龚道枝, 魏新平, 王君勤. 基于极限学习机的参考作物蒸散量预测模型[J]. 农业工程学报, 2015, 31(S1): 153-160. |
[5] | 刘小华, 魏炳乾, 吴立峰, 杨坡. 4种人工智能模型在江西省参考作物蒸散量计算中的适用性[J]. 排灌机械工程学报, 2020, 38(1): 102-108. |
[6] | 徐颖, 张皓杰, 崔宁博, 冯禹, 胡笑涛, 龚道枝. 基于不同ELM的西北旱区参考作物蒸散量模拟模型[J]. 中国农村水利水电, 2019(1): 6-12. |
[7] | 胡欣欣, 张玉虎, 向柳. 新疆阿克苏地区气象干旱特征研究[J]. 安徽农业科学, 2015, 43(35): 96-100+104. |
[8] | Vapink, V. (1999) The Nature of Statistical Learning Theory. Springer-Verlag, New York. |
[9] | 李阳, 常佳乐, 王宇阳. 基于群体智能优化的MKL-SVM算法及肺结节识别[J]. 工程科学学报, 2021, 43(9): 1157-1165. |
[10] | Nguyen-Tuong, D., Seeger, M. and Peters, J. (2009) Model Learning with Local Gaussian Process Regression. Advanced Robotics, 23, 2015-2034. https://doi.org/10.1163/016918609X12529286896877 |
[11] | 周靖楠, 刘振男, 陆之洋, 焦卫国. 基于MI-KPCA与高斯回归过程的北汝河中长期径流预测[J]. 水电能源科学, 2021, 39(5): 42-45. |
[12] | Friedman, J.H. (2001) Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29, 1189-1232. https://doi.org/10.1214/aos/1013203451 |
[13] | Wang, L., et al. (2020) Application of BP Neural Network to the Prediction of Coal Ash Melting Characteristic Temperature. Fuel, 260, Article ID: 116324. https://doi.org/10.1016/j.fuel.2019.116324 |
[14] | 郭映映, 齐贺香, 李素文, 牟福生. 基于粒子群算法的BP神经网络在大气NO2浓度预测中的应用研究[J]. 大气与环境光学学报, 2022, 17(2): 230-240. |
[15] | Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., O’Donnell, J. and Rowe, C.M. (1985) Statistics for the Evaluation of Model Performance. Journal of Geophysical Research Oceans, 90, 8995-9005.
https://doi.org/10.1029/JC090iC05p08995 |
[16] | Nash, J.E. and Sutcliffe, J.V. (1970) River Flow Forecasting through Conceptual Models, Part I: A Discussion of Principles. Journal of Hydrology, 10, 282-290. https://doi.org/10.1016/0022-1694(70)90255-6 |
[17] | Singh, K.P., et al. (2009) Artificial Neural Network Modeling of the River Water Quality—A Case Study. Ecological Modelling, 220, 888-895. https://doi.org/10.1016/j.ecolmodel.2009.01.004 |
[18] | Desideri, U., Zepparelli, F., Morettini, V., et al. (2013) Com-parative Analysis of Concentrating Solar Power and Photovoltaic Technologies: Technical and Environmental Evaluations. Applied Energy, 102, 765-784.
https://doi.org/10.1016/j.apenergy.2012.08.033 |