|
2022年贵阳机场一次春季飑线天气诊断分析
|
Abstract:
本文利用地面和高空实况和多普勒雷达资料,对贵阳机场2022年4月24日飑线天气发生的天气形势、物理量条件以及雷达图像进行分析,得到以下结论:1) 贵阳机场这次飑线天气的影响系统主要是高空槽、西南涡东移,地面冷锋和辐合线南压,天气尺度强迫强,配合低空急流暖湿气流输送,中低层高温高湿极有利于强对流天气发生。2) 贵阳站上空,CAPE值、K指数、SI指数,假相当位温均较大,低层暖湿,中层干冷,层结不稳定度大,0℃层和?20℃层达到了冰雹出现的高度。3) 机场上空,在天气发生前中低层辐合,高层辐散,且有强的上升运动。4) 贵阳700 hPa以下水汽充沛,有水汽自南向北,自低空向高空输送,水汽条件极好。5) 雷达图像上,17:28时弓形回波形成。径向速度图像上,低层有径向速度大值区,低层径向速度辐散,中层辐合,高仰角有风暴顶辐散,表现出雷暴大风和冰雹的回波特征。
This paper uses ground and high-altitude live conditions and Doppler radar data to analyze the weather situation, physical quantity conditions and radar images of Guiyang airport on April 24, 2022, and obtains the following conclusions: 1) The influence system of Guiyang airport’s squall line weather is mainly high-altitude trough, southwest vortex eastward shift, ground cold front and radial line south pressure, strong weather scale forcing, with low-altitude rapids warm and humid air flow transport, high temperature humidity in the middle and low layers are very conducive to strong convective weather. 2) Above Guiyang Station, CAPE value, K index, SI index and θ se are larger, the low layer is warm and wet, the middle layer is dry and cold, the layer junction instability is large, and the 0?C layer and the ?20?C layer have reached the height of hail. 3) Above the airport, before the occurrence of the weather, the middle and low layers are converging, the high-rise is radiating, and there is a strong upward movement. 4) The water vapor is abundant in Guiyang below 700 hPa, there is water vapor from south to north, from low altitude to high altitude, the water vapor conditions are excellent. 5) On the radar image, a bow echo is formed at 17:28. In the radial velocity image, the low layer has a radial velocity large value area, the low radial velocity is radiating, the middle layer is converging, and the high elevation angle has a storm top radiation dispersion, the echo characteristics of thunderstorms and hail are showing.
[1] | 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法[M]. 北京: 气象出版社, 2000: 370-371. |
[2] | Fujita, T. (1955) Results of Detailed Synoptic Studies of Squall Lines. Tellus, 7, 405-436. |
[3] | Newton, C.W. (1950) Structure and Mechanism of the Prefrontal Squall Line. Journal of Meteorology, 7, 210-222. |
[4] | Houze Jr., R.A., Biggerstaff, M.I., Rutledge, S.A. and Smull, B.F. (1989) Interpretation of Doppler Weather Radar Displays of Midlatitude Mesoscale Convective Systems. Bulletin of the American Meteorological Society, 70, 608-619. |
[5] | 丁一汇, 李鸿洲, 章名立, 等. 我国飑线发生条件的研究[J]. 大气科学, 1982, 6(1): 18-27. |
[6] | 屈梅芳, 俞小鼎, 农孟松, 等. 一次弱垂直风切变环境下飑线发展维持的成因分析[J]. 暴雨灾害, 2021, 40(5): 466-473. |
[7] | 王林, 沈新勇, 王勇, 等. 华南一次飑线升尺度增长过程的机制分析[J]. 高原气象, 2021, 40(1): 145-158. |
[8] | 许可, 杜小玲, 周文钰, 等. 贵州一次暖区飑线大风与大冰雹的雷达结构特征分析[J]. 中低纬山地气象, 2021, 45(3): 65-72. |
[9] | L.W.尤西林尼, D.R.约翰森, 高良成. 对流层高、低空急流的耦合和强对流风暴发展的关系[J]. 气象科技, 1980, S4.003.12-17. |
[10] | 孙继松, 戴建华, 何立富, 等. 强对流天气预报的基本原理与技术方法[M]. 北京: 气象出版社, 2014: 178. |
[11] | 俞小鼎, 姚秀萍, 熊廷南, 等. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 2006: 60-61, 122-123. |