全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

各向异性张量加权分数阶变分图像去噪模型
Anisotropic Tensor Weighted Fractional-Order Variation Image Denoising Model

DOI: 10.12677/JISP.2022.113017, PP. 162-181

Keywords: Jacobian矩阵,各向异性张量,分数阶,局部邻域,图像去噪
The Jacobian Matrix
, Anisotropic Tensor, Fractional-Order, Local Neighborhood, Image Denoising

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了增强去噪后图像的边缘和保留图像纹理,本文提出了一种新的各向异性张量加权分数阶变分图像去噪模型,即利用分数阶的Jacobian矩阵形式与一个各向异性张量的乘积的Frobenius范数,作为本文模型的正则化子,其包含图像在每个像素点的局部邻域变化的信息,根据图像结构灵活地控制和定向去除噪声,增强图像的边缘和保留纹理细节信息。本文采用交替方向乘子(ADMM)法进行数值求解,所有的子问题都具有闭形解。数值实验表明,该模型复原的图像有效地保留图像的边缘和纹理等细节特征,抑制阶梯效应,与其他模型相比更具有竞争力。
In order to enhance the edge of the denoised image and preserve the texture of the image, a new anisotropic tensor weighted Fractional-order Variation image denoising model is proposed in this paper, which uses the Frobenius norm of the product of fractional Jacobian matrix form and an anisotropic tensor as the regularizer of this model. It contains the local neighborhood change information of the image at each pixel point, and can flexibly control and directionally remove noise and enhance edge according to the image structure, and retain texture details. In this paper, alternate directional multipliers method (ADMM) is used to solve numerical problems. Numerical experiments show that this model can effectively retain the edge and texture of the image and suppress the step effect, which is more competitive than other models.

References

[1]  Perona, P. and Malik, J. (1990) Scale-Space and Edge Detection Using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 629-639.
https://doi.org/10.1109/34.56205
[2]  Weickert, J. (1998) Anisotropic Diffusion in Image Processing. Teubner, Stuttgart.
[3]  Grasmair, M. and Lenzen, F. (2010) Anisotropic Total Variation Filtering. Applied Mathematics & Optimization, 62, 323-339.
https://doi.org/10.1007/s00245-010-9105-x
[4]  Lenzen, F., Becker, F., Lellmann, J., Petra, S. and Schnorr, C. (2013) A Class of Quasi-Variational Inequalities for Adaptive Image Denoising and Decomposition. Computational Optimization and Applications, 54, 371-398.
https://doi.org/10.1007/s10589-012-9456-0
[5]  Roussos, A. and Maragos, P. (2010) Tensor-Based Image Diffusions Derived from Generalizations of the Total Variation and Beltrami Functionals. 2010 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, 26-29 September 2010, 4141-4144.
https://doi.org/10.1109/ICIP.2010.5653241
[6]  Astr?m, F., Baravdish, G. and Felsberg, M. (2012) On Tensor-Based PDES and Their Corresponding Variational Formulations with Application to Color Image Denoising. Computer Vision ECCV 2012, 12th European Conference on Computer Vision, Florence, 7-13 October 2012, 215-228.
https://doi.org/10.1007/978-3-642-33712-3_16
[7]  Astr?m, F., Baravdish, G. and Felsberg, M. (2015) A Tensor Variational Formulation of Gradient Energy Total Variation. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, Springer, Berlin, 307-320.
https://doi.org/10.1007/978-3-319-14612-6_23
[8]  Weickert, J. and Schn?rr, C. (2001) A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion. International Journal of Computer Vision, 45, 245-264.
https://doi.org/10.1023/A:1013614317973
[9]  Rudin, L.I., Osher, S. and Fatemi, E. (1992) Nonlinear Total Variation Based Noise Removal Algorithms. Physica D Nonlinear Phenomena, 60, 259-268.
https://doi.org/10.1016/0167-2789(92)90242-F
[10]  Chan, T. and Esedoglu, S. (2005) Aspects of Total Variation Regularized L1 Function Approximation. SIAM Journal on Applied Mathematics, 65, 1817-1837.
https://doi.org/10.1137/040604297
[11]  Bai, J. and Feng, X.C. (2007) Fractional-Order Anisotropic Diffusion for Image Denoising. IEEE Transactions on Image Processing, 16, 2492-2502.
https://doi.org/10.1109/TIP.2007.904971
[12]  Ren, Z., He, C. and Zhang, Q. (2013) Fractional Order Total Variation Regularization for Image Super-Resolution. Signal Processing, 93, 2408-2421.
https://doi.org/10.1016/j.sigpro.2013.02.015
[13]  Zhang, Y., Zhang, W., Lei, Y., et al. (2014) Few-View Image Reconstruction with Fractional-Order Total Variation. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31, 981-995.
https://doi.org/10.1364/JOSAA.31.000981
[14]  Duan, J., Ward, W.O.C., Sibbett, L., et al. (2017) Introducing Anisotropic Tensor to High Order Variational Model for Image Restoration. Digital Signal Processing, 69, 323-336.
https://doi.org/10.1016/j.dsp.2017.07.001
[15]  Hou, L., Qin, Y., Zheng, H., et al. (2021) Hybrid High-Order and Fractional-Order Total Variation with Nonlocal Regularization for Compressive Sensing Image Reconstruction. Electronics, 10, 503-516.
https://doi.org/10.3390/electronics10020150
[16]  Chowdhury, M.R., Qin, J. and Lou, Y. (2020) Non-Blind and Blind Deconvolution under Poisson Noise Using Fractional-Order Total Variation. Journal of Mathematical Imaging and Vision, 62, 987-1004.
https://doi.org/10.1007/s10851-020-00987-0
[17]  Yao, W., Guo, Z., Sun, J., et al. (2019) Multiplicative Noise Removal for Texture Images Based on Adaptive Anisotropic Fractional Diffusion Equations. SIAM Journal on Imaging Sciences, 12, 839-873.
https://doi.org/10.1137/18M1187192
[18]  Xiao, L.A., et al. (2022) A Fractional Variational Image Denoising Model with Two-Component Regularization Terms. Applied Mathematics and Computation, 427, Article ID: 127178.
https://doi.org/10.1016/j.amc.2022.127178
[19]  Chan, T., Marquina, A. and Mulet, P. (2001) High-Order Total Variation-Based Image Restoration. SIAM Journal on Scientific Computing, 22, 503-516.
https://doi.org/10.1137/S1064827598344169
[20]  Bredies, K., Kunisch, K. and Pock, T. (2010) Total Generalized Variation. SIAM Journal on Imaging Sciences, 3, 492-526.
https://doi.org/10.1137/090769521

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133