|
PI3K/AKT/mTOR通路在卵巢癌中的作用
|
Abstract:
卵巢癌是所有妇科恶性肿瘤的主要死亡原因。在卵巢癌的发生过程中,异常信号通路的激活必不可少。PI3K/AKT/mTOR通路的激活存在于多种恶性肿瘤的演变过程中,控制细胞周期、代谢、粘附。近年来,通过研究PI3K/AKT/mTOR通路的机制及靶向抑制剂,从而为恶性肿瘤的靶向治疗奠定基础已成为学术界的热点。本文就该信号通路在卵巢癌中可能发挥的作用做一综述。
Ovarian cancer is the main cause of death of all gynecological malignancies. In the process of ovarian cancer, the activation of abnormal signal pathway is essential. The activation of PI3K/Akt/ mTOR pathway exists in the evolution of a variety of malignant tumors and controls cell cycle, metabolism and adhesion. In recent years, it has become a hot spot in academic circles to study the mechanism of PI3K/Akt/mTOR pathway and targeted inhibitors, so as to lay the foundation for targeted therapy of malignant tumors. This paper reviews the possible role of signaling pathway in ovarian cancer.
[1] | Wang, P., Hu, Y.J., Qu, P.P., et al. (2022) Protein Tyrosine Phosphatase Receptor Type Z1 Inhibits the Cisplatin Resistance of Ovarian Cancer by Regulating PI3K/AKT/mTOR Signal Pathway. Bioengineered, 13, 1931-1941.
https://doi.org/10.1080/21655979.2021.2022268 |
[2] | Boussios, S., Mikropoulos, C., Samartzis, E., et al. (2020) Wise Management of Ovarian Cancer: On the Cutting Edge. Journal of Personalized Medicine, 10, Article No. 41. https://doi.org/10.3390/jpm10020041 |
[3] | Tang, Z., Li, C.W., Kang, B.X., et al. (2017) GEPIA: A Web Server for Cancer and Normal Gene Expression Profiling and Interactive Analyses. Nucleic Acids Research, 45, W98-W102. https://doi.org/10.1093/nar/gkx247 |
[4] | Borley, J., Wilhelm-Benartzi, C., Brown, R., Ghaem-Maghami, S., et al. (2012) Does Tumour Biology Determine Surgical Success in the Treatment of Epithelial Ovarian Cancer? A Systematic Literature Review. British Journal of Cancer, 107, 1069-1074. https://doi.org/10.1038/bjc.2012.376 |
[5] | Muhanmode, Y., Wen, M.K., Maitinuri, A., et al. (2021) Curcumin and Resveratrol Inhibit Chemoresistance in Cisplatin-Resistant Epithelial Ovarian Cancer Cells via Targeting P13K Pathway. Human & Experimental Toxicology, 40, S861-S868. https://doi.org/10.1177/09603271211052985 |
[6] | Cheaib, B., Auguste, A. and Leary, A. (2015) The PI3K/Akt/mTOR Pathway in Ovarian Cancer: Therapeutic Opportunities and Challenges. Chinese Journal of Cancer, 34, 4-16. https://doi.org/10.5732/cjc.014.10289 |
[7] | Torre, L.A., Trabert, B., DeSantis, C.E., et al. (2018) Ovarian Cancer Statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 284-296. https://doi.org/10.3322/caac.21456 |
[8] | Engelman, J.A. (2009) Targeting PI3K Signalling in Cancer: Opportunities, Challenges and Limitations. Nature Reviews Cancer, 9, 550-562. https://doi.org/10.1038/nrc2664 |
[9] | Siegel, R., Naishadham, D. and Jemal, A. (2012) Cancer Statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 10-29. https://doi.org/10.3322/caac.20138 |
[10] | Liby, T.A., Spyropoulos, P., Lindner, H.B., et al. (2012) Akt3 Controls Vascular Endothelial Growth Factor Secretion and Angiogenesis in Ovarian Cancer Cells. International Journal of Cancer, 130, 532-543.
https://doi.org/10.1002/ijc.26010 |
[11] | Liu, J., Wu, D.-C., Qu, L.-H., et al. (2018) The Role of mTOR in Ovarian Neoplasms, Polycystic Ovary Syndrome, and Ovarian Aging. Clinical Anatomy, 31, 891-898. https://doi.org/10.1002/ca.23211 |
[12] | Ghoneum, A., Abdulfattah, A.Y. and Said, N. (2020) Targeting the PI3K/AKT/mTOR/NFκB Axis in Ovarian Cancer. Journal of Cellular Immunology, 2, 68-73. |
[13] | Janus, J.M., O’Shaughnessy, R.F.L., Harwood, C.A. and Maffucci, T. (2017) Phosphoinositide 3-Kinase-Dependent Signalling Pathways in Cutaneous Squamous Cell Carcinomas. Cancers (Basel), 9, Article No. 86.
https://doi.org/10.3390/cancers9070086 |
[14] | Aziz, A. Fraid, S., Qin, K., Wang, H.Q. and Liu, B. (2018) PIM Kinases and Their Relevance to the PI3K/AKT/mTOR Pathway in the Regulation of Ovarian Cancer. Biomolecules, 8, 7. https://doi.org/10.3390/biom8010007 |
[15] | Mabuchi, S., Kuroda, H., Takahashi, R. and Sasano, T. (2015) The PI3K/AKT/mTOR Pathway as a Therapeutic Target in Ovarian Cancer. Gynecologic Oncology, 137, 173-179. https://doi.org/10.1016/j.ygyno.2015.02.003 |
[16] | Cui, L.L., Bao, H.C., Liu, Z.F., et al. (2020) hUMSCs Regulate the Differentiation of Ovarian Stromal Cells via TGF-β(1)/Smad3 Signaling Pathway to Inhibit Ovarian Fibrosis to Repair Ovarian Function in POI Rats. Stem Cell Research & Therapy, 11, Article No. 386. https://doi.org/10.1186/s13287-020-01904-3 |
[17] | Deng, J., Bai, X.P., Feng, X.J., et al. (2019) Inhibition of PI3K/Akt/mTOR Signaling Pathway Alleviates Ovarian Cancer Chemoresistance through Reversing Epithelial-Mesenchymal Transition and Decreasing Cancer Stem Cell Marker Expression. BMC Cancer, 19, Article No. 618. https://doi.org/10.1186/s12885-019-5824-9 |
[18] | Uruski, P., Mikula-Pietrasik, J., Pakula, M., et al. (2021) Malignant Ascites Promote Adhesion of Ovarian Cancer Cells to Peritoneal Mesothelium and Fibroblasts. International Journal of Molecular Sciences, 22, Article No. 4222.
https://doi.org/10.3390/ijms22084222 |
[19] | 雷燕, 吴绪峰. CD_(44)基因在卵巢癌中的表达及其与预后的关系[J]. 医学综述, 2013, 19(1): 155-158. |
[20] | 黄丽珊, 卢碧燕, 李仲均, 黄素然, 王静文. CD44v6在卵巢上皮性肿瘤中的表达及其对卵巢癌细胞株侵袭和迁移能力的影响[J]. 现代肿瘤医学, 2016, 24(4): 625-629. |
[21] | Si, X., Xu, F.X., Xu, F.H., et al. (2020) CADM1 Inhibits Ovarian Cancer Cell Proliferation and Migration by Potentially Regulating the PI3K/Akt/mTOR Pathway. Biomedicine & Pharmacotherapy, 123, Article ID: 109717.
https://doi.org/10.1016/j.biopha.2019.109717 |
[22] | van der Ploeg, P., Uittenboogaard, A., Thijs, A.M.J., et al. (2021) The Effectiveness of Monotherapy with PI3K/AKT/ mTOR Pathway Inhibitors in Ovarian Cancer: A Meta-Analysis. Gynecologic Oncology, 163, 433-444.
https://doi.org/10.1016/j.ygyno.2021.07.008 |
[23] | Sobo?an, M., Bra?i?, S., Knez, J., et al. (2020) The Communication between the PI3K/AKT/mTOR Pathway and Y-Box Binding Protein-1 in Gynecological Cancer. Cancers (Basel), 12, 205. https://doi.org/10.3390/cancers12010205 |
[24] | Ediriweera, M.K., Tennekoon, K.H. and Samarakoon, S.R. (2019) Role of the PI3K/AKT/mTOR Signaling Pathway in Ovarian Cancer: Biological and Therapeutic Significance. Seminars in Cancer Biology, 59, 147-160.
https://doi.org/10.1016/j.semcancer.2019.05.012 |
[25] | Lengyel, C.G., Altuma, S.C., Habeeb, B.S., et al. (2020) The Potential of PI3K/AKT/mTOR Signaling as a Druggable Target for Endometrial and Ovarian Carcinomas. Current Drug Targets, 21, 946-961.
https://doi.org/10.2174/1389450120666191120123612 |
[26] | Ghoneum, A. and Said, N. (2019) PI3K-AKT-mTOR and NFκB Pathways in Ovarian Cancer: Implications for Targeted Therapeutics. Cancers (Basel), 11, 949. https://doi.org/10.3390/cancers11070949 |
[27] | Wen, W., Han, E.S., Dellinger, T.H., et al. (2020) Synergistic Anti-Tumor Activity by Targeting Multiple Signaling Pathways in Ovarian Cancer. Cancers (Basel), 12, 2586. https://doi.org/10.3390/cancers12092586 |
[28] | Hu, X.Q, Xia, M.H., Wang, J.B., et al. (2020) Dual PI3K/mTOR Inhibitor PKI-402 Suppresses the Growth of Ovarian Cancer Cells by Degradation of Mcl-1 through Autophagy. Biomedicine & Pharmacotherapy, 129, Article ID: 110397.
https://doi.org/10.1016/j.biopha.2020.110397 |
[29] | Gasparri, M.L., Bardhione, E., Ruscito, I., et al. (2017) PI3K/AKT/mTOR Pathway in Ovarian Cancer Treatment: Are We on the Right Track? Geburtshilfe und Frauenheilkunde, 77, 1095-1103. https://doi.org/10.1055/s-0043-118907 |
[30] | Liu, J., Leng, T.Y., Zhang, Q., et al. (2018) Anticancer Activity of Cucurbitacin-A in Ovarian Cancer Cell Line SKOV3 Involves Cell Cycle Arrest, Apoptosis and Inhibition of mTOR/PI3K/Akt Signaling Pathway. Journal of BUON, 23, 124-128. |
[31] | Zhang, S., Leng, T.Y., Zhang, Q., et al. (2018) Sanguinarine Inhibits Epithelial Ovarian Cancer Development via Regulating Long Non-Coding RNA CASC2-EIF4A3 Axis and/or Inhibiting NF-κB Signaling or PI3K/AKT/mTOR Pathway. Biomedicine & Pharmacotherapy, 102, 302-308. https://doi.org/10.1016/j.biopha.2018.03.071 |
[32] | Zhang, Y. and Zhang, Y. (2018) Marsdenia Tenacissima Extract Inhibits Proliferation and Promotes Apoptosis in Human Ovarian Cancer Cells. Medical Science Monitor, 24, 6289-6297. https://doi.org/10.12659/MSM.909726 |