|
TRAF7在肿瘤发展中的作用
|
Abstract:
肿瘤坏死因子受体(TNF-R)相关因子(TRAF)家族有七个成员,是TNF-R超家族受体的细胞质区域偶联的信号转导分子。TRAF蛋白主要作为支架或酶蛋白激活NF-κB、MAPK等不同的下游信号通路,参与胚胎发育、组织稳态以及先天性和适应性免疫反应调节等重要生理过程。TRAF7是近年来被发现的一种具有E3泛素连接酶活性的TRAF家族成员,含有一个N端RING指结构域和一个负责底物识别的C端WD40结构域。最近几年的研究发现,TRAF7是一种新的肿瘤抑制蛋白,与人类多种癌症的发生和发展有着密切联系。本文主要综述了TRAF7与脑膜瘤、间皮瘤以及肝癌等几种人类肿瘤的发生和发展过程中的作用,期望对于认识肿瘤发病机制和治疗靶标有帮助。
Abstract: The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family has seven members and is characterized as signaling transduction molecules coupled to the cytoplasmic regions of the TNF-R superfamily. All the TRAFs proteins functionally act as a scaffold and/or enzymatic proteins to regulate activation of mitogen-activated protein kinases (MAPKs) and transcription factors of nuclear factor-κB family (NF-κB). All TRAFs have been identified to be widely involved in embryonic development, tissue homeostasis, and regulation of innate and adaptive immune responses. TRAF7, as the last discovered member of the TRAFs protein with E3 ligase activation, containing an N-terminal RING finger domain and a C-terminal WD40 domain, has been identified to be involved in the genesis and progression of several human cancers, suggesting TRAF7 as a novel tumor suppressor protein. The paper attempts to review the role of TRAF7 in the genesis and progression of Meningioma, Mesothelioma and Hepatocellular Carcinoma, hoping to be helpful for understanding tumor pathogenesis and therapeutic targets.
[1] | Ha, H., Han, D. and Choi, Y. (2009) TRAF-Mediated TNFR-Family Signaling. Current Protocols in Immunology, 87, 11.9D.1-11.9D.19. https://doi.org/10.1002/0471142735.im1109ds87 |
[2] | Xie, P. (2013) TRAF Molecules in Cell Signaling and in Human Diseases. Journal of Molecular Signaling, 8, 7.
https://doi.org/10.1186/1750-2187-8-7 |
[3] | Zotti, T., Scudiero, I., Vito, P. and Stilo, R. (2017) The Emerging Role of TRAF7 in Tumor Development. Journal of Cellular Physiology, 232, 1233-1238. https://doi.org/10.1002/jcp.25676 |
[4] | Zotti, T., Vito, P. and Stilo R. (2012) The Seventh Ring: Exploring TRAF7 Functions. Journal of Cellular Physiology, 227, 1280-1284. https://doi.org/10.1002/jcp.24011 |
[5] | Bouwmeester, T., Bauch, A., Ruffner, H., Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P.O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S., Hopf, C., Huhse, B., Mangano, R., Michon, A.M., Schirle, M., Schlegl, J., Schwab, M., Stein, M.A., Bauer, A., Casari, G., Drewes, G., Gavin, A.C., Jackson, D.B., Joberty, G., Neubauer, G., Rick, J., Kuster, B. and Superti-Furga, G. (2004) A Physical and Functional Map of the Human TNF-alpha/NF-kappa B Signal Transduction Pathway. Nature Cell Biology, 6, 97-105.
https://doi.org/10.1038/ncb1086 |
[6] | Yang, J., Lin, Y. and Guo, Z. (2001) The Essential Role of MEKK3 in TNF-Induced NF-kappaB Activation. Nature Immunology, 2, 620-624. https://doi.org/10.1038/89769 |
[7] | Xu, L.G., Li, L.Y. and Shu, H.B. (2004) TRAF7 Potentiates MEKK3-Induced AP1 and CHOP Activation and Induces Apoptosis. Journal of Biological Chemistry, 279, 17278-17282. https://doi.org/10.1074/jbc.C400063200 |
[8] | Karin, M. and Gallagher, E. (2009) TNFR Signaling: Ubiquitin-Conjugated Traffic Signals Control Stop-and-Go for MAPK Signaling Complexes. Immunological Reviews, 228, 225-240.
https://doi.org/10.1111/j.1600-065X.2008.00755.x |
[9] | Hacker, H., Tseng, P.H. and Karin M. (2011) Expanding TRAF Function: TRAF3 as a Tri-Faced Immune Regulator. Nature Reviews Immunology, 11, 457-468. https://doi.org/10.1038/nri2998 |
[10] | Zotti, T., Uva, A., Ferravante, A., Campos, E.I., Lane, W.S., Sanchez, I. and Dynlacht, B.D. (2011) TRAF7 Protein Promotes Lys-29-Linked Polyubiquitination of IkappaB Kinase (IKKgamma)/NF-kappaB Essential Modulator (NEMO) and p65/RelA Protein and Represses NF-kappaB Activation, Journal of Biological Chemistry, 286, 22924-22933.
https://doi.org/10.1074/jbc.M110.215426 |
[11] | Tsikitis, M., Acosta-Alvear, D. and Blais, A. (2010) Traf7, a MyoD1 Transcriptional Target, Regulates Nuclear Factor-kappaB Activity during Myogenesis, EMBO Reports, 11, 969-976. https://doi.org/10.1038/embor.2010.154 |
[12] | Scudiero, I., Zotti, T., Ferravante, A., Vessichelli, M., Reale, C., Masone, M.C., Leonardi, A., Vito, P. and Stilo, R. (2012) Tumor Necrosis Factor (TNF) Receptor-Associated Factor 7 Is Required for TNFalpha-Induced Jun NH2-Terminal Kinase Activation and Promotes Cell Death by Regulating Polyubiquitination and Lysosomal Degradation of c-FLIP Protein. Journal of Biological Chemistry, 287, 6053-6061. https://doi.org/10.1074/jbc.M111.300137 |
[13] | Wang, L., Wang, L., Zhang, S., Qu, G., Zhang, D., Li, S. and Liu, S. (2013) Downregulation of Ubiquitin E3 Ligase TNF Receptor-Associated Factor 7 Leads to Stabilization of p53 in Breast Cancer. Oncology Reports, 29, 283-287.
https://doi.org/10.3892/or.2012.2121 |
[14] | Chastagner, P., Israel, A. and Brou, C. (2006) Itch/AIP4 Mediates Deltex Degradation through the Formation of K29-Linked Polyubiquitin Chains. EMBO Reports, 7, 1147-1153. https://doi.org/10.1038/sj.embor.7400822 |
[15] | Morita, Y., Kanei-Ishii, C., Nomura, T. and Ishii, S. (2005) TRAF7 Sequesters c-Myb to the Cytoplasm by Stimulating Its Sumoylation. Molecular Biology of the Cell, 16, 5433-5444. https://doi.org/10.1091/mbc.e05-08-0731 |
[16] | Mucenski, M.L., Mclain, K., Kier, A.B., Swerdlow, S.H., Schreiner, C.M., Miller, T.A., Pietryga, D.W., Scott, W.J., Potter, S. and Steven, A, (1991) functional c-myb Gene Is Required for Normal Murine Fetal Hepatic Hematopoiesis. Cell, 65, 677-689. https://doi.org/10.1016/0092-8674(91)90099-K |
[17] | Keats, J.J., Fonseca, R., Chesi, M., Schop, R., Bake,r A., Chng, W.J., Van, W.S., Tiedemann, R. Shi, C.X., Sebag M., Braggio, E., Henry, T., Zhu, Y.X., Fogle, H., Price-Troska, T., Ahmann, G., Mancini, C., Brents, L.A., Kumar, S., Greipp, P., Dispenzieri, A., Bryant, B., Mulligan, G., Bruhn, L., Barrett, M., Valdez, R., Trent, J., Stewart, A.K., Carpten, J. and Bergsagel, P.L. (2007) Promiscuous Mutations Activate the Noncanonical NF-kappaB Pathway in Multiple Myeloma. Cancer Cell, 12, 131-144. https://doi.org/10.1016/j.ccr.2007.07.003 |
[18] | Demchenko, Y.N., Glebov, O.K., Zingone AKeats, J.J., Bergsagel, P.L. and Kuehl, W.M. (2010) Classical and/or Alternative NF-kappaB Pathway Activation in Multiple Myeloma. Blood, 115, 3541-3552.
https://doi.org/10.1182/blood-2009-09-243535 |
[19] | Annunziata, C.M., Davis, R.E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., Lenz, G. Hanamura, I., Wright, G., Xiao, W., Dave, S., Hurt, E.M., Tan, B., Zhao, H., Stephens, O., Santra, M., Williams, D.R., Dang, L., Barlogie, B., Shaughnessy, J.D.J., Kuehl, W.M. and Staudt, L.M. (2007) Frequent Engagement of the Classical and Alternative NF-kappaB Pathways by Diverse Genetic Abnormalities in Multiple Myeloma. Cancer Cell, 12, 115-130.
https://doi.org/10.1016/j.ccr.2007.07.004 |
[20] | Nagel, I., Bug, S., Tonnies, H., Ammerpohl, O., Richter, J., Vater, I., Callet-Bauchu, E., Calasanz, M.J., Martinez- Climent, J.A., Bastard, C., Salido, M., Schroers, E., Martin-Subero, J.I., Gesk, S., Harder, L., Majid, A., Dyer, M.J. and Siebert, R. (2009) Biallelic Inactivation of TRAF3 in a Subset of B-Cell Lymphomas with Interstitial del(14)(q24.1q32.33). Leukemia, 23, 2153-2155. https://doi.org/10.1038/leu.2009.149 |
[21] | Otto, C., Giefing, M., Massow, A., Vater, I., Gesk, S., Schlesner, M., Richter, J., Klapper, W., Hansmann, M.L., Siebert, R. and Kuppers, R. (2012) Genetic Lesions of the TRAF3 and MAP3K14 Genes in Classical Hodgkin Lymphoma. British Journal of Haematology, 157, 702-708. https://doi.org/10.1111/j.1365-2141.2012.09113.x |
[22] | Braggio, E., Keats, J.J., Leleu, X., Van Wier, S., Jimenez-Zepeda, V.H., Valdez, R., Schop, R.F. Price-Troska, T., Henderson, K., Sacco, A., Azab, F., Greipp, P., Gertz, M., Hayman, S. and Rajkumar, S.V. (2009) Identification of Copy Number Abnormalities and Inactivating Mutations in Two Negative Regulators of Nuclear Factor-kappaB Signaling Pathways in Waldenstrom’s Macroglobulinemia. Cancer Research, 69, 3579-3588.
https://doi.org/10.1158/0008-5472.CAN-08-3701 |
[23] | Compagno, M., Lim, W.K., Grunn, A., Nandula, S.V., Brahmachary, M., Shen, Q., Bertoni, F., Ponzoni, M., Scandurra, M., Califano, A., Bhagat, G., Chadburn, A., Dalla-Favera, R. and Pasqualucci, L. (2009) Mutations of Multiple Genes Cause Deregulation of NF-kappaB in Diffuse Large B-Cell Lymphoma. Nature, 459, 717-721.
https://doi.org/10.1038/nature07968 |
[24] | Camilleri-Broet, S., Cremer, I., Marmey, B., Comperat, E., Viguie, F., Audouin, J., Rio, M.C., Fridman, W.H., Sautes- Fridman, C. and Regnier, C.H. (2007) TRAF4 Overexpression Is a Common Characteristic of Human Carcinomas. Oncogene, 26, 142-147. https://doi.org/10.1038/sj.onc.1209762 |
[25] | Starczynowski, D.T., Lockwood, W.W., Delehouzee S., Chari R., Wegrzyn, J., Fuller M., Tsao, M.S., Lam, S., Gazdar, A.F., Lam, W.L. and Karsan, A. (2011) TRAF6 Is an Amplified Oncogene Bridging the RAS and NF-kappaB Pathways in Human Lung Cancer. Journal of Clinical Investigation, 121, 4095-4105. https://doi.org/10.1172/JCI58818 |
[26] | Sun, H., Li, X., Fan, L., Wu, G., Li, M. and Fang, J. (2014) TRAF6 Is Upregulated in Colon Cancer and Promotes Proliferation of Colon Cancer Cells. The International Journal of Biochemistry & Cell Biology, 53, 195-201.
https://doi.org/10.1016/j.biocel.2014.04.010 |
[27] | Meng, Q., Zheng, M., Liu, H., Song, C., Zhang, W., Yan, J., Qin, L. and Liu, X. (2012) TRAF6 Regulates Proliferation, Apoptosis, and Invasion of Osteosarcoma Cell. Molecular and Cellular Biochemistry, 371, 177-186.
https://doi.org/10.1007/s11010-012-1434-4 |
[28] | Rong, Y., Wang, D., Wu, W., Jin, D., Kuang, T., Ni, X., Zhang, L. and Lou, W. (2014) TRAF6 Is Over-Expressed in Pancreatic Cancer and Promotes the Tumorigenicity of Pancreatic Cancer Cells. Medical Oncology, 31, 260.
https://doi.org/10.1007/s12032-014-0260-9 |
[29] | Bi, W.L., Zhang, M., Wu, W.W., Mei, Y. and Dunn, I.F. (2016) Meningioma Genomics: Diagnostic, Prognostic, and Therapeutic Applications. Frontiers in Surgery, 3, Article No. 40. https://doi.org/10.3389/fsurg.2016.00040 |
[30] | Lee, S., Karas, P.J., Hadley, C.C., Bayley, V.J., Khan, A.B., Jalali, A., Sweeney, A.D., Klisch, T.J. and Patel, A.J. (2019) The Role of Merlin/NF2 Loss in Meningioma Biology. Cancers (Basel), 11, 1633.
https://doi.org/10.3390/cancers11111633 |
[31] | Curto, M. and Mcclatchey, A.I. (2008) Nf2/Merlin: A Coordinator of Receptor Signalling and Intercellular Contact. British Journal of Cancer, 98, 256-262. https://doi.org/10.1038/sj.bjc.6604002 |
[32] | Plotkin, S.R., James, M.F., Han, S., Gusella, J.F., Manning, B.D., Stemmer-Rachamimov, A.O., Polizzano, C. and Ramesh, V. (2009) NF2/Merlin Is a Novel Negative Regulator of mTOR Complex 1, and Activation of mTORC1 Is Associated with Meningioma and Schwannoma Growth. Molecular and Cellular Biology, 29, 4250-4261.
https://doi.org/10.1128/MCB.01581-08 |
[33] | Clark, V.E., Erson-Omay, E.Z., Serin, A., Yin, J., Cotney, J., Ozduman, K., Avsar, T., Li J., Murray, P.B., Henegariu, O., Yilmaz, S., Gunel, J.M., Carrion-Grant, G., Yilmaz, B., Grady, C., Tanrikulu, B., Bakircioglu, M., Kaymakcalan, H., Caglayan, A.O., Sencar, L., Ceyhun, E., Atik, A.F., Bayri, Y., Bai, H., Kolb, L.E., Hebert, R.M., Omay, S.B., Mishra-Gorur, K., Choi, M., Overton, J.D., Holland, E.C., Mane, S., State, M.W., Bilguvar, K., Baehring, J.M., Gutin, P.H., Piepmeier, J.M., Vortmeyer, A., Brennan, C.W., Pamir, M.N. Kilic, T., Lifton, R.P., Noonan, J.P., Yasuno, K. and Gunel, M. (2013) Genomic Analysis of Non-NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO. Science, 339, 1077-1080. https://doi.org/10.1126/science.1233009 |
[34] | Brastianos, P.K., Horowitz, P.M, Santagata, S., Jones, R.T., McKenna, A., Getz, G., Ligon, K.L., Palescandolo, E., Van., H.P., Ducar, M.D., Raza, A., Sunkavalli A., Macconaill, L.E., Stemmer-Rachamimov, A.O., Louis, D.N., Hahn, W.C., Dunn, I.F. and Beroukhim, R. (2013) Genomic Sequencing of Meningiomas Identifies Oncogenic SMO and AKT1 Mutations. Nature Genetics, 45, 285-289. https://doi.org/10.1038/ng.2526 |
[35] | Reuss, D.E., Piro, R.M., Jones, D.T., Reuss, D.E., Piro, R.M., Jones, D.T., Simon, M., Ketter, R., Kool, M., Becker, A., Sahm, F., Pusch, S., Meyer, J., Hagenlocher, C., Schweizer, L., Capper, D., Kickingereder, P., Mucha, J., Koelsche, C., Jager N., Santarius, T., Tarpey, P.S., Stephens, P.J., Andrew, F.P., Wellenreuther, R., Kraus, J., Lenartz, D., Herold- Mende, C., Hartmann, C., Mawrin, C., Giese, N., Eils, R., Collins, V.P., Konig, R., Wiestler, O.D., Pfister, S.M. and von Deimling, A. (2013) Secretory Meningiomas Are Defined by Combined KLF4 K409Q and TRAF7 Mutations. Acta Neuropathologica, 125, 351-358. https://doi.org/10.1007/s00401-013-1093-x |
[36] | Clark, V.E., Harmanci, A.S., Bai, H., Youngblood, M.W., Lee, T.I., Baranoski, J.F., Ercan-Sencicek, A.G., Abraham, B.J., Weintraub, A.S., Hnisz, D., Simon, M., Krischek, B., Erson-Omay, E.Z., Henegariu, O., Carrion-Grant, G., Mishra- Gorur, K., Duran D., Goldmann, J.E., Schramm, J., Goldbrunner, R., Piepmeier, J.M., Vortmeyer, A.O., Gunel, J.M., Bilguvar, K., Yasuno, K., Young, R.A. and Gunel, M. (2016) Recurrent Somatic Mutations in POLR2A Define a Distinct Subset of Meningiomas. Nature Genetics, 48, 1253-1259. https://doi.org/10.1038/ng.3651 |
[37] | Yuzawa, S., Nishihara, H. and Tanaka, S. (2016) Genetic Landscape of Meningioma. Brain Tumor Pathology, 33, 237- 247. https://doi.org/10.1007/s10014-016-0271-7 |
[38] | Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. (2007) Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 131, 861-872.
https://doi.org/10.1016/j.cell.2007.11.019 |
[39] | Zammarchi F., Morelli, M., Menicagli, M., Di Cristofano, C., Zavaglia, K., Paolucci, A., Campani, D., Aretini, P., Boggi, U., Mosca, F., Cavazzana, A., Cartegni, L., Bevilacqua, G. and Mazzanti, C.M. (2011) KLF4 Is Novel Candidate Tumor Suppressor Gene in Pancreatic Ductal Carcinoma. The American Journal of Pathology, 178, 361-372.
https://doi.org/10.1016/j.ajpath.2010.11.021 |
[40] | Yu, F., Li, J., Chen, H., Fu, J., Ray, S., Huang, S., Zheng, H. and Ai, W. (2011) Kruppel-Like Factor 4 (KLF4) Is Required for Maintenance of Breast Cancer Stem Cells and for Cell Migration and Invasion, Oncogene, 30, 2161-2172.
https://doi.org/10.1038/onc.2010.591 |
[41] | Yoon, H.S. and Yang, V.W. (2004). Requirement of Krüppel-Like Factor 4 in Preventing Entry into Mitosis Following DNA Damage. Journal of Biological Chemistry, 279, 5035-5041. https://doi.org/10.1074/jbc.M307631200 |
[42] | Yoon, H.S., Ghaleb, A.M., Nandan, M.O., Hisamuddin, I.M., Dalton, W.B. and Yang, V.W. (2005) Krüppel-Like Factor 4 Prevents Centrosome Amplification Following γ-Irradiation-Induced DNA Damage. Oncogene, 24, 4017-4025.
https://doi.org/10.1038/sj.onc.1208576 |
[43] | Tang, H., Zhu, H., Wang, X., Hua, L., Li, J., Xie, Q., Chen, X., Zhang, T. and Gong, Y. (2017) KLF4 Is a Tumor Suppressor in Anaplastic Meningioma Stem-Like Cells and Human Meningiomas. Journal of Molecular Cell Biology, 9, 315-324. https://doi.org/10.1093/jmcb/mjx023 |
[44] | Najm, P, Zhao, P, Steklov, M., Najm, P., Zhao, P., Steklov, M., Sewduth, R.N., Baietti, M.F., Pandolfi, S., Criem, N., Lechat, B., Maia, T.M., Van, H.D., Corthout, N., Eyckerman, S., Impens, F. and Sablina, A.A. (2021) Loss-of-Function Mutations in TRAF7 and KLF4 Cooperatively Activate RAS-Like GTPase Signaling and Promote Meningioma Development. Cancer Research, 81, 4218-4229. https://doi.org/10.1158/0008-5472.CAN-20-3669 |
[45] | Vivanco, I. and Sawyers, C.L. (2002) The Phosphatidylinositol 3-Kinase AKT Pathway in Human Cancer. Nature Reviews Cancer, 2, 489-501. https://doi.org/10.1038/nrc839 |
[46] | Yang, H., Testa, J.R. and Carbone, M. (2008) Mesothelioma Epidemiology, Carcinogenesis, and Pathogenesis. Current Treatment Options in Oncology, 9, 147-157. https://doi.org/10.1007/s11864-008-0067-z |
[47] | Bianchi, A.B., Mitsunaga, S.I., Cheng, J.Q., Cheng, J.Q., Klein, W.M., Jhanwar, S.C., Seizinger, B., Kley, N., Klein- Szanto, A.J. and Testa, J.R. (1995) High Frequency of Inactivating Mutations in the Neurofibromatosis Type 2 Gene (NF2) in Primary Malignant Mesotheliomas. Proceedings of the National Academy of Sciences of the United States of America, 92, 10854-10858. https://doi.org/10.1073/pnas.92.24.10854 |
[48] | Guo, G., Chmielecki, J., Goparaju, C., Heguy, A., Dolgalev, I., Carbone, M., Seepo, S., Meyerson, M. and Pass, H.I. (2015) Whole-Exome Sequencing Reveals Frequent Genetic Alterations in BAP1, NF2, and CUL1 in Malignant Pleural Mesothelioma. Cancer Research, 75, 264-269. https://doi.org/10.1158/0008-5472.CAN-14-1008 |
[49] | Zhao, R., Choi, B.Y., Lee, M.H., Bode, A.M. and Dong, Z. (2016) Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in Cancer. EBioMedicine, 8, 30-39. https://doi.org/10.1016/j.ebiom.2016.04.017 |
[50] | Wang, A., Papneja, A., Hyrcza, M., Al-Habeeb, A. and Ghazarian, D. (2016) Gene of the Month: BAP1. Journal of Clinical Pathology, 69, 750-753. https://doi.org/10.1136/jclinpath-2016-203866 |
[51] | Bueno, R., Stawiski, E.W., Goldstein, L.D., Durinck, S. De Rienzo, A., Modrusan, Z., Gnad, F., Nguyen, T.T., Jaiswal, B.S., Chirieac, L.R., Sciaranghella, D., Dao, N., Gustafson, C.E., Munir, K.J., Hackney, J.A., Chaudhuri, A., Gupta, R., Guillory, J., Toy, K., Ha, C., Chen, Y.J., Stinson, J., Chaudhuri, S., Zhang, N., Wu, T.D., Sugarbaker, D.J., de Sauvage, F.J., Richards,, W.G. and Seshagiri, S. (2016) Comprehensive Genomic Analysis of Malignant Pleural Mesothelioma Identifies Recurrent Mutations, Gene Fusions and splicing Alterations. Nature Genetics, 48, 407-416.
https://doi.org/10.1038/ng.3520 |
[52] | Stevers, M., Rabban, J.T., Garg, K., Van, Z.J. Onodera, C. Grenert, J.P., Yeh, I., Bastian, B.C., Zaloudek, C. and Solomon, D. (2019), A Well-Differentiated Papillary Mesothelioma of the Peritoneum Is Genetically Defined by Mutually Exclusive Mutations in TRAF7 and CDC42. Modern Pathology, 32, 88-99.
https://doi.org/10.1038/s41379-018-0127-2 |
[53] | Allen, T.C., Cagle, P.T., Churg, A.M., Colby, T.V., Gibbs, A.R., Hammar, S.P., Corson, J.M., Grimes, M.M., Ordonez, N.G., Roggli, V., Travis, W.D. and Wick, M.R. (2005) Localized Malignant Mesothelioma. The American Journal of Surgical Pathology, 29, 866-873. https://doi.org/10.1097/01.pas.0000165529.78945.dc |
[54] | Goode, B., Joseph, N.M., Stevers, M., Van, Z.J., Onodera, C., Talevich, E., Grenert, J.P., Yeh, I., Bastian, B.C., Phillips, J.J., Garg, K., Rabban, J.T., Zaloudek, C. and Solomon, D.A. (2018) Adenomatoid Tumors of the Male and Female Genital Tract Are Defined by TRAF7 Mutations That Drive Aberrant NF-κB Pathway Activation. Modern Pathology, 31, 660-673. https://doi.org/10.1038/modpathol.2017.153 |
[55] | Klein, C.J., Wu, Y., Jentoft, M.E., Mer, G., Spinner, R.J., Dyck, P.J., Dyck, P.J. and Mauermann, M.L. (2017) Genomic Analysis Reveals Frequent TRAF7 Mutations in Intraneural Perineuriomas. Annals of Neurology, 81, 316-321.
https://doi.org/10.1002/ana.24854 |
[56] | Tamura, D., Maeda, D., Halimi, S.A., Okimura, M. and Goto, A. (2018) Adenomatoid Tumour of the Uterus Is Frequently Associated with Iatrogenic Immunosuppression. Histopathology, 73, 1013-1022.
https://doi.org/10.1111/his.13726 |
[57] | Mcglynn, K.A., Petrick, J.L. and London, W.T. (2015) Global Epidemiology of Hepatocellular Carcinoma: An Emphasis on Demographic and Regional Variability. Clinical Liver Disease, 19, 223-238.
https://doi.org/10.1016/j.cld.2015.01.001 |
[58] | Jiang, Y., Han, Q., Zhao, H. and Zhang, J. (2021) The Mechanisms of HBV-Induced Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 8, 435-450. https://doi.org/10.2147/JHC.S307962 |
[59] | Forner, A., Reig, M. and Bruix, J. (2018) Hepatocellular Carcinoma. The Lancet, 391, 1301-1314.
https://doi.org/10.1016/S0140-6736(18)30010-2 |
[60] | Zhang, Q., Zhang, X. and Dong, W. (2021) TRAF7 Contributes to Tumor Progression by Promoting Ubiquitin-Proteasome Mediated Degradation of P53 in Hepatocellular Carcinoma. Cell Death Discovery, 7, 352.
https://doi.org/10.1038/s41420-021-00749-w |
[61] | He, H., Wu, Z., Li, S., Chen, K., Wang, D., Zou, H., Chen, H., Li, Y., Liu, Z. and Qu, C. (2020) TRAF7 Enhances Ubiquitin-Degradation of KLF4 to Promote Hepatocellular Carcinoma Progression. Cancer Letters, 469, 380-389.
https://doi.org/10.1016/j.canlet.2019.11.012 |
[62] | Sumie, S., Kuromatsu, R., Okuda, K., Ando, E., Takata, A., Fukushima, N., Watanabe, Y., Kojiro, M. and Sata, M. (2008) Microvascular Invasion in Patients with Hepatocellular Carcinoma and Its Predictable Clinicopathological Factors. Annals of Surgical Oncology, 15, 1375-1382. https://doi.org/10.1245/s10434-008-9846-9 |
[63] | Ghaleb, A.M. and Yang, V.W. (2017) Kruppel-Like Factor 4 (KLF4): What We Currently Know. Gene, 611, 27-37.
https://doi.org/10.1016/j.gene.2017.02.025 |
[64] | Li, Q., Gao, Y., Jia, Z., Mishra, L. and Xie, K. (2012) Dysregulated Kruppel-Like Factor 4 and Vitamin D Receptor Signaling Contribute to Progression of Hepatocellular Carcinoma. Gastroenterology, 143, 799-810e792.
https://doi.org/10.1053/j.gastro.2012.05.043 |
[65] | Goh, G., Walradt, T., Markarov, V., Blom, A., Riaz N., Doumani, R., Stafstrom, K., Moshiri, A., Yelistratova, L. and Levinsohn, J. (2016) Mutational Landscape of MCPyV-Positive and MCPyV-Negative Merkel Cell Carcinomas with Implications for Immunotherapy. Oncotarget, 7, 3403-3415. https://doi.org/10.18632/oncotarget.6494 |
[66] | Radu, M., Semenova, G., Kosoff, R. and Chernoff, J. (2014) PAK Signalling during the Development and Progression of Cancer. Nature Reviews Cancer, 14, 13-25. https://doi.org/10.1038/nrc3645 |