全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

综合缺水量最小的水资源优化配置模型及应用
Optimal Water Resources Allocation Model of Minimum Comprehensive Water Shortage and Its Application

DOI: 10.12677/JWRR.2022.113030, PP. 274-285

Keywords: 水资源配置,缺水量最小,权重系数,蒸发渗漏
Water Resources Allocation
, Minimum Water Shortage, Weight Coefficient, Evaporation Leakage

Full-Text   Cite this paper   Add to My Lib

Abstract:

合理、高效地分配水资源成为水资源领域亟待解决的问题,水资源优化配置是解决该问题的重要手段,如何有效协调不同用水类别之间的竞争关系,并考虑用水需求和供水能力在时间尺度上的变化情况是难点。本文提出一种流域水资源配置的综合缺水量最小优化数学模型,即通过定义权重系数建立调度期综合缺水量最小目标函数,并在建立约束条件时建立水库自身蒸发渗漏损失以及退水流量的计算公式,最终联立目标函数与约束条件进行求解,其在南盘江流域的实际应用表明:1) 权重系数的设置有效协调了各种用水类别间的竞争关系,实现了水资源在用水配置上的最优分配,具有很强的适用性与应用价值。2) 供水条件时间变化特性会使得系统内出现结构性缺水,在水库蓄水期其影响较强。3) 受调度过程影响相同水库的年蒸发渗漏损失可能不同,且损失水量占比明显,不可忽略。
Rational and efficient allocation of water resources has become an urgent problem, and the optimal water resources allocation is an important means to solve this problem. How to effectively coordinate the competitive relationship between different water use categories and consider the changes of water demand and water supply capacity in time scale is the difficult point. This paper proposes an optimal water resources allocation model to minimize the comprehensive water shortage during the operation period. The weight coefficient, calculation formulas for the evaporation leakage loss, the return flow of the reservoir, and the constraint conditions are established. The application results in the Nanpanjiang River basin shows that: 1) The setting of weight coefficient effectively coordinates the competitive relationship among various water use categories, realizes the optimal allocation of water resources in water use allocation, and has strong applicability and application value. 2) The time-varying characteristics of water supply conditions will lead to structural water shortage in the system, which has a strong impact during the impounding period of the reservoir. 3) Affected by the operation process, the annual evaporation leakage loss of the same reservoir may be different, and the proportion of water loss is obvious, which cannot be ignored.

References

[1]  MOGHADAM, S. H., ASHOFTEH, P. S. and LOáICIGA, H. A. Optimal water allocation of surface and ground water resources under climate change with WEAP and IWOA modeling. Water Resources Management, 2022, 1-25.
https://doi.org/10.1007/s11269-022-03195-0
[2]  HUANG, Y., CAI, Y., XIE, Y., ZHANG, F., HE, Y., ZHANG, P., LI, B., LI, B., JIA, Q., WANG, Y. and QI, Z. An optimization model for water resources allocation in Dongjiang River basin of Guangdong-Hong Kong-Macao Greater Bay Area under multiple complexities. Science of the Total Environment, 2022, 820: 153198.
https://doi.org/10.1016/j.scitotenv.2022.153198
[3]  姜秋香, 何晓龙, 王子龙, 吴云星. 基于区间多阶段随机规划模型的黑龙江省水资源优化配置研究[J/OL]. 水利水电科技进展, 2022: 1-10. http://kns.cnki.net/kcms/detail/32.1439.tv.20220520.1411.002.html, 2022-06-07. JIANG Qiuxiang, HE Xiaolong, WANG Zilong and WU Yunxing. Optimal allocation of water resources based on interval multi-stage stochastic programming model in Heilongjiang Province. Advances in Science and Technology of Water Resources, 2022: 1-10. http://kns.cnki.net/kcms/detail/32.1439.tv.20220520.1411.002.html, 2022-06-07. (in Chinese)
[4]  何艳虎, 陈晓宏, 林凯荣, 吴孝情, 桂发亮. 东江流域水资源优化配置报童模式研究[J]. 水力发电学报, 2015, 34(6): 57-64. HE Yanhu, CHEN Xiaohong, LIN Kairong, WU Xiaoqing and GUI Faliang. Newsboy model of water resources allocation and its application in Dongjiang basin. Journal of Hydroelectric Engineering, 2015, 34(6): 57-64. (in Chinese)
[5]  伍鑫, 陈植欣, 温庆博, 王忠静, 胡黎明. 基于强化学习的非常规水资源优化配置模型[J]. 水力发电学报, 2021, 40(7): 23-31. WU Xin, CHEN Zhixin, WEN Qingbo, WANG Zhongjing and HU Liming. Optimal allocation model of unconventional water resources based on reinforcement learning. Journal of Hydroelectric Engineering, 2021, 40(7): 23-31. (in Chinese)
[6]  吴泽宁, 索丽生. 水资源优化配置研究进展[J]. 灌溉排水学报, 2004(2): 1-5.
https://doi.org/10.13522/j.cnki.ggps.2004.02.001 WU Zening, SUO Lisheng. Advance on water resources optimal allocation. Journal of Irrigation and Drainage, 2004(2): 1-5.
https://doi.org/10.13522/j.cnki.ggps.2004.02.001 (in Chinese)
[7]  郭毅, 陈璐, 周建中, 周清, 李杰, 娄思静. 基于均衡发展的郁江流域水资源优化配置[J]. 水电能源科学, 2020, 38(3): 42-45. GUO Yi, CHEN Lu, ZHOU Jianzhong, ZHOU Qing, LI Jie and LOU Sijing. Optimal allocation of water resources in Yujiang river basin based on balanced development. Water Resources and Power, 2020, 38(3): 42-45. (in Chinese)
[8]  谭佳音, 蒋大奎. 基于水资源合作的水资源短缺区域水资源优化配置[J]. 系统管理学报, 2020, 29(1): 118. TAN Jiayin, JIANG Dakui. Optimal allocation of water resources in water stressed regions based on water resources cooperation among water using sectors. Journal of Systems & Management, 2020, 29(1): 118. (in Chinese)
[9]  岳琼, 郭萍, 王友芝, 张成龙, 李鹏. 基于区间两阶段模糊可信性约束模型的灌区水资源配置[J]. 农业机械学报, 2019, 50(4): 228-235. YUE Qiong, GUO Ping, WANG Youzhi, ZHANG Chenlong and LI Peng. Optimal water allocation of irrigation district based on interval-parameter two-stage stochastic fuzzy credibility constrained programming. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 228-235. (in Chinese)
[10]  孔祥铭. 基于Copula分析的水资源系统风险评估与管理方法研究[D]: [博士学位论文]. 北京: 华北电力大学, 2016. KONG Xiangming. Development of Copula-based approaches for water resources systems risk assessment and management. Ph.D. Thesis, Beijing: North China Electric Power University, 2016. (in Chinese)
[11]  阮本清, 韩宇平, 王浩, 蒋任飞. 水资源短缺风险的模糊综合评价[J]. 水利学报, 2005(8): 906-912. RUAN Benqing, HAN Yuping, WANG Hao and JIANG Renfei. Fuzzy comprehensive assessment of water shortage risk. Journal of Hydraulic Engineering, 2005(8): 906-912. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133