|
麻类作物转基因技术分析与评价
|
Abstract:
麻类作物主要包括苎麻、亚麻、黄麻、红麻、剑麻、大麻。分子生物学是对生物在分子层次上的研究,遗传转化技术已成为植物突变体创造、新资源创制以及品种改良的重要手段。麻类作物的基因工程研究起步较晚,发展相对滞后,除亚麻外,其他尚在起步阶段,且很少得到重视。因此,在今后的工作中,我们应当加大分子标记技术和转基因技术的结合,以获取更多更好具有优良性状的新品种。
The main hemp crops grown as cash crops include ramie, flax, jute, kenaf, sisal, and hemp. Molecular biology is the study of biology at the molecular level. Genetic transformation technology has become an important means of plant mutant creation, new resource creation and variety improvement. The genetic engineering research of hemp crops started late, and the development is rela-tively lagging. Except for flax, others are still at the initial stage, and they have received little attention. Therefore, in our future work, we should increase the combination of molecular marker technology and transgenic technology to obtain more and better new varieties with excellent traits.
[1] | 王玉富. 亚麻转基因技术研究进展[J]. 中国麻业, 2006, 28(1): 1-5. |
[2] | 王玉富, 周思君, 刘燕, 等. 亚麻转基因植株的再生及生根培养的研究[J]. 中国麻作, 2000, 22(3): 25-27. |
[3] | 王玉富. 我国亚麻生物技术的研究现状及发展[J]. 中国麻业, 2005, 27(2): 60-65. |
[4] | McHughen, A. (1989) Agrobacterium Mediated Transfer of Chlorsulfu-ron Resistance to Commercial Flax Cultivars. Plant Cell Reports, 8, 445-449. https://doi.org/10.1007/BF00269045 |
[5] | McHughen, A. and Holm, F.A. (1995) Development and Preliminary Field Testing of a Glufosinate-Ammonium Tolerant Transgenic Flax. Canadian Journal of Plant Science, 75, 117-120. https://doi.org/10.4141/cjps95-019 |
[6] | Mlynárová, L., Bauer, M., Nap, J.P. and Pretová, A. (1994) High Effi-ciency Agrobacterium-Mediated Gene Transfer to Flax. Plant Cell Reports, 13, 282-285. https://doi.org/10.1007/BF00233320 |
[7] | 张福泉, 李宗道. 麻类作物遗传转化研究进展[J]. 湖南农业科学, 1999(5): 4-6. |
[8] | 林荔辉, 祁建民, 方平平, 等. 红麻无刺新型品种金光1号的选育[J]. 中国麻业, 2001, 23(3): 1-4. |
[9] | Wang, B., Peng, D.X., Liu, L.J., Sun, Z.X., Zhang, N. and Gao, S.M. (2007) An Efficient Adventitious Shoot Regeneration System for Ramie (Boehmeria nivea Gaud) Using Thidiazuron. Botanical Studies, 48, 173-180. |
[10] | Tang, W., Chen, H., Xu, C.G., Li, X.H., Lin, Y.J. and Zhang, Q.F. (2006) Development of Insect-Resistant Transgenic indica Rice with a Synthetic cry1C* Gene. Molecular Breeding, 18, 1-10. https://doi.org/10.1007/s11032-006-9002-9 |
[11] | Young, L., Hammerlindl, J., Babic, V., McLeod, J., Sharpe, A., Matsalla, C., Bekkaoui, F., Marquess, L. and Booker, H.M. (2015) Genetics, Structure, and Prevalence of FP967 (CDC Triffid) T-DNA in Flax. SpringerPlus, 4, 146.
https://doi.org/10.1186/s40064-015-0923-9 |
[12] | Yemets, A.I., Bayer, O.A., Radchuk, V.V. and Blume, Y.B. (2009) Agrobacterium-Mediated Transformation of Flax with a Mutant Tubulin Gene Responsible for Resistance to Di-nitroaniline Herbicides. Russian Journal of Genetics, 45, 1215-1222. https://doi.org/10.1134/S1022795409100093 |
[13] | Clive James. 2015年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2016, 36(4): 1-11. |
[14] | 钱迎倩. 转基因作物的利弊分析[J]. 生物技术通报, 1999, 15(5): 7-11. |
[15] | 贾士荣. 转基因作物的安全性争论及其对策[J]. 生物技术通报, 1999, 15(6): 1-7. |
[16] | Musialak, M., Wróbel-Kwiatkowska, M., Kulma, A., Starzycka, E. and Szopa, J. (2008) Improving Retting of Fibre through Ge-netic Modification of Flax to Express Pectinases. Transgenic Research, 17, 133-147.
https://doi.org/10.1007/s11248-007-9080-4 |