全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ICEEMDAN在GNSS-MR海平面高度反演中的应用
Application of ICEEMDAN in GNSS-MR Sea Surface Height Inversion

DOI: 10.12677/GST.2022.103014, PP. 140-148

Keywords: GNSS-MR,改进的自适应噪声的完全集合经验模态分解,信噪比(SNR),海平面高度
GNSS-MR
, Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Signal-to-Noise Ratio, Sea Level Height

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对全球导航卫星系统多路径反射测量(GNSS multipath reflectometry, GNSS-MR)技术存在的信噪比(Signal-to-Noise Ratio, SNR)信号中掺杂噪声的问题,提出利用改进的自适应噪声的完全集合经验模态分解方法对原始信噪比数据进行分解,筛选出不含噪声的有效残差序列,实现去噪处理,再应用于GNSS-MR技术反演海平面高度。以西印度洋非洲东海岸MAYG测站GPS数据进行实验,结果表明该方法相比二次多项式拟合方法,均方根误差降低了29%,相关系数为0.98,验证了该方法应用于海平面测高的有效性。
For the problem of doping noise in Signal-to-Noise Ratio(SNR) signals existing in GNSS multipath reflectometry (GNSS-MR) technology, improved complete ensemble empirical mode decomposition with adaptive noise method is proposed to decompose the original Signal-to-noise ratio data, filter out the effective residual sequence without noise, implement denoising and applied to GNSS-MR technology to retrieve sea level height. Experiment with GPS data from MAYG station on the east coast of Africa in the western Indian Ocean, the results show that compared with the quadratic polynomial fitting method, the root mean square error has been reduced by 29%, the correlation coefficient is 0.98, the validity of the method applied to sea level altimetry is verified.

References

[1]  刘立龙, 封海洋, 陈伟清, 吴丕团, 陈香萍, 陈军. 基于GPS信噪比反演海平面高度研究[J]. 桂林理工大学学报, 2017, 37(4): 629-634.
[2]  陈发德, 刘立龙, 黄良珂, 黎峻宇. 基于多模GNSS-MR海平面测高研究[J]. 地球物理学进展, 2018, 33(5): 1767-1772.
[3]  陈发德, 刘立龙, 黎峻宇, 黄良珂. 基于BDS-MR的海平面测高技术[J]. 桂林理工大学学报, 2018, 38(3): 507-512.
[4]  张双成, 戴凯阳, 南阳, 张勤, 瞿伟, 李振宇, 等. GNSS-MR技术用于雪深探测的初步研究[J]. 武汉大学学报(信息科学版), 2018, 43(2): 234-240.
[5]  李婷, 张显云, 龙新, 胡思华, 李宏达. 多卫星组合的GPS-MR土壤湿度反演[J]. 大地测量与地球动力学, 2019, 39(6): 643-647.
[6]  Martin-Neira, M. (1993) A Pasive Reflectometry and Interferometry System (PARIS) Application to Ocean Altimetry. ESA Journal, 17, 331-355.
[7]  Larson, K.M., Loefgren, J.S. and Haas, R. (2013) Coastal Sea Level Measurements Using a Single Geodetic GPS Receiver. Advances in Space Research, 51, 1301-1310.
https://doi.org/10.1016/j.asr.2012.04.017
[8]  张双成, 南阳, 李振宇, 张勤, 戴凯阳, 赵迎辉. GNSS-MR技术用于潮位变化监测分析[J]. 测绘学报, 2016, 45(9): 1042-1049.
[9]  吴继忠, 杨荣华. 利用GPS接收机反射信号测量水面高度[J]. 大地测量与地球动力学, 2012, 32(6): 135-138.
[10]  王瑞芳. 利用EMD进行GNSS-MR潮位监测研究[J]. 测绘通报, 2020(10): 114-117.
[11]  Colominas, M.A., Schlotthauer, G. and Torres, M.E. (2014) Improved Complete Ensemble EMD: A Suitable Tool for Biomedical Signal Processing. Biomedical Signal Processing and Control, 14, 19-29.
https://doi.org/10.1016/j.bspc.2014.06.009
[12]  Amjady, N. and Abedinia, O. (2017) Short Term Wind Power Prediction Based on Improved Kriging Interpolation, Empirical Mode Decomposition, and Closed-Loop Forecasting Engine. Sustainability, 9, Article No. 2104.
https://doi.org/10.3390/su9112104
[13]  王勇, 石强, 娄泽生, 郝振航, 任栋. 基于ICEEMDAN与最小二乘的GNSS垂向序列噪声与非构造形变去除[J]. 大地测量与地球动力学, 2020, 40(1): 39-44.
[14]  翟永杰, 杨旭. 基于ICEEMDAN-ICA的焊缝信号去噪算法[J]. 热加工工艺, 2022, 51(1): 96-102+106.
[15]  Cai, H., Wu, Z., Huang, C. and Huang, D. (2019) Wind Power Forecasting Based on Ensemble Empirical Mode Decomposition with Generalized Regression Neural Network Based on Cross-Validated Method. Journal of Electrical Engineering & Technology, 14, 1823-1829.
https://doi.org/10.1007/s42835-019-00186-x
[16]  张文忠, 周蓉, 武旭红, 薛志宏. 利用白噪声分解特征的EEMD阈值降噪方法[J]. 测绘科学技术学报, 2013, 30(3): 255-259.
[17]  李大超. 基于极限学习机的风电功率预测研究[D]: [硕士学位论文]. 兰州: 兰州交通大学, 2016.
[18]  任超, 梁月吉, 庞光锋, 杨兴跃, 李冠成. 经验模态分解和遗传小波神经网络法用于边坡变形预测[J]. 测绘科学技术学报, 2014, 31(6): 551-555.
[19]  陈东峰. 基于ICEEMDAN和SSA-ELM的短期风电功率预测研究[D]: [硕士学位论文]. 保定: 华北电力大学, 2021.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133