All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

一类离散FHN系统的分支控制
Bifurcation Control of the Discrete FHN System

DOI: 10.12677/DSC.2022.113013, PP. 117-126

Keywords: 离散FHN系统,Neimark-Sacker分支,分支控制
Discrete FHN System
, Neimark-Sacker Bifurcation, Bifurcation Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文讨论了离散FHN系统中Neimark-Sacker分支的控制问题,主要设计了一类状态反馈控制器,该控制器不仅形式简单,而且可以不改变不动点的位置,精确有效地控制此类分支的临界值,从而实现分支发生的提前或延滞。
This paper investigates the control of Neimark-Sacker bifurcation of the discrete FHN system. A kind of state feedback controller is designed, which not only has a simple form, but also accurately and effectively controls the critical value of such bifurcation without changing the position of the fixed point, so as to realize the advance or delay of the bifurcation.

References

[1]  Yuan, L.-G. and Yang, Q.-G. (2015) Bifurcation, Invariant Curve and Hybrid Control in a Discrete-time Predator-Prey System. Applied Mathematical Modeling, 39, 2345-2362.
https://doi.org/10.1016/j.apm.2014.10.040
[2]  Liu, W.Y. and Cai, D.H. (2019) Bifurcation, Chaos Analysis and Control in a Discrete-Time Predator-Prey System. Advances in Difference Equation, 2019, Article No. 11.
https://doi.org/10.1186/s13662-019-1950-6
[3]  Guo, W.C. and Yang, J.D. (2017) Hopf Bifurcation Control of Hydro-Turbine Governing System with Sloping Ceiling Tailrace Tunnel Using Nonlinear State Feedback. Chaos, Solitons & Fractals, 104, 426-434.
https://doi.org/10.1016/j.chaos.2017.09.003
[4]  Akhtar, S., Ahmed, R., Batool, M., Shah, N.A. and Chung, J.D. (2021) Stability, Bifurcation and Chaos Control of a Discretized Leslie Prey-Predator Model. Chaos, Solitons & Fractals, 152, Article No. 111345.
https://doi.org/10.1016/j.chaos.2021.111345
[5]  Cheng, T., Tang, S. and Cheke, R.A. (2019) Threshold Dynamics and Bifurcation of a State-Dependent Feedback Nonlinear Control SIR Model. Journal of Computational and Nonlinear Dynamics, 14, Article No. 071001.
https://doi.org/10.1115/1.4043001
[6]  Zhan, F.B. and Liu, S.Q. (2019) A Hénon-Like Map Inspired by the Generalized Discrete-Time FitzHugh-Nagumo Model. Nonlinear Dynamics, 97, 2675-2691.
https://doi.org/10.1007/s11071-019-05156-6
[7]  Holmes, G.J. (1993) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, New York, 156-163.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413