|
Material Sciences 2022
Sn/SnO/SnO2@C复合材料的制备及储锂性能
|
Abstract:
锡基材料作为锂离子电池负极材料,其体积膨胀效应显著,严重限制了实际应用。本文利用配位反应得到Sn-MOF前驱体,然后再经过碳化处理制备了Sn/SnO/SnO2@C多相复合材料。综合利用X射线衍射、扫描电镜、透射电镜、恒电流测试及循环伏安测试等技术手段对所得产物的形貌、相组成和储锂性能进行了研究。物相及形貌分析表明,以Sn-MOF为前驱体制备的复合材料为结晶度较高的多相复合物,包括Sn、SnO、SnO2及石墨碳。随着有机配体比例的增加,复合材料中孔隙结构增加,锡含量逐渐增大。电化学性能测试表明,具有多孔结构的Sn/SnO/SnO2@C复合材料在100 mA/g的电流密度下,放电比容量达到1066 mAh/g,在1000 mA/g电流密度下经过35圈电化学循环后的容量保持率为83.6%。由于具有更丰富的孔隙结构,样品2的高倍率充放电性能更加突出。在2000 mA/g电流密度下,其脱锂比容量达到108.1 mAh/g。
As the anode material of lithium ion battery, tin-based materials have severe volume expansion effect, which seriously limits its practical application. In this paper, Sn-MOF precursors were obtained by coordination reaction, and Sn/SnO/SnO2@C multiphase composites were prepared by carbonization. The morphology, phase composition and lithium storage properties of the products were studied by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, galvanostatic testing and cyclic voltammetry. The analysis of phase and morphology exhibits that the composites prepared by Sn-MOF precursor consist of multiphase with high crystallinity, including Sn, SnO, SnO2 and graphite carbon. With the increase of organic ligand, the pore structure and tin content of the composites gradually increase. Electrochemical tests indicate that, for Sn/SnO/SnO2@C composites with porous structure, the specific discharge capacity reaches 1066 mAh/g at the current density of 100 mA/g, and the capacity retention rate remains 83.6 % after 35 electrochemical cycles at the current density of 1000 mA/g. Due to its rich pore structure, sample 2 has more outstanding rate charge/discharge performance. At the current density of 2000 mA/g, the specific capacity of delithiation reaches 108.1 mAh/g.
[1] | Gao, C., Jiang, Z., Wang, P., Jensen, L.R., Zhang, Y. and Yue, Y. (2020) Optimized Assembling of MOF/SnO2/Graphene Leads to Superior Anode for Lithium Ion Batteries. Nano Energy, 74, Article ID: 104868.
https://doi.org/10.1016/j.nanoen.2020.104868 |
[2] | Nam, H.G., Park, J.Y., Yuk, J.M. and Han, S.M. (2022) Phase Transformation Mechanism and Stress Evolution in Sn Anode. Energy Storage Materials, 45, 101-109. https://doi.org/10.1016/j.ensm.2021.11.034 |
[3] | Li, B., Song, Y., Wang, Y., He, Z. and Gao, W. (2022) Yolk-Shelled SnO2@NxC Spheres with Controllable Void Space as High-Capacity and Cycle-Stable Anode Materials for Lithium-Ion Batteries. Materials & Design, 219, Article ID: 110745. https://doi.org/10.1016/j.matdes.2022.110745 |
[4] | Li, B., Bi, R., Yang, M., Gao, W. and Wang, J. (2022) Coating Conductive Polypyrrole Layers on Multiple Shells of Hierarchical SnO2 Spheres and Their Enhanced Cycling Stability as Lithium-Ion Battery Anode. Applied Surface Science, 586, Article ID: 152836. https://doi.org/10.1016/j.apsusc.2022.152836 |
[5] | Xia, S.-B., Li, F.-S., Shen, X., Li, X., Cai, X.-L. and Liu, J.-J. (2019) Heterostructural SnO/SnO2@C Composite Fabricated from Tin-Based Coordination Polymer as High-Performance Anode Materials for Lithium Ion Batteries. Materials Letters, 251, 94-97. https://doi.org/10.1016/j.matlet.2019.05.051 |
[6] | Sun, P., Davis, J., Cao, L., Jiang, Z., Cook, J.B., Ning, H., Liu, J., Kim, S., Fan, F., Nuzzo, R.G. and Braun, P.V. (2019) High Capacity 3D Structured Tin-Based Electroplated Li-Ion Battery Anodes. Energy Storage Materials, 17, 151-156.
https://doi.org/10.1016/j.ensm.2018.11.017 |
[7] | Zhu, Z., Wang, S., Du, J., Jin, Q., Zhang, T., Cheng, F. and Chen, J. (2014) Ultrasmall Sn Nanoparticles Embedded in Nitrogen-Doped Porous Carbon as High-Performance Anode for Lithium-Ion Batteries. Nano Letters, 14, 153-157.
https://doi.org/10.1021/nl403631h |
[8] | Ying, H., Zhang, S., Meng, Z., Sun, Z. and Han, W.-Q. (2017) Ultrasmall Sn Nanodots Embedded inside N-Doped Carbon Microcages as High-Performance Lithium and Sodium Ion Battery Anodes. Journal of Materials Chemistry A, 5, 8334-8342. https://doi.org/10.1039/C7TA01480E |
[9] | Moon, J., Hoang, T.D., Soo Park, S., Park, S., Rhee, D.Y., Lee, J., Han, S.A., Park, M.-S. and Kim, J.H. (2022) Intrinsic Electrochemical Activity of Ni in Ni3Sn4 Anode Accommodating High Capacity and Mechanical Stability for Fast-Charging Lithium-Ion Batteries. Journal of Energy Chemistry, 71, 470-477.
https://doi.org/10.1016/j.jechem.2022.03.006 |
[10] | Guan, D., Li, J., Gao, X. and Yuan, C. (2014) A Comparative Study of Enhanced Electrochemical Stability of Tin-Nickel Alloy Anode for High-Performance Lithium Ion Battery. Journal of Alloys and Compounds, 617, 464-471.
https://doi.org/10.1016/j.jallcom.2014.08.036 |
[11] | Ye, X., Lin, Z., Liang, S., Huang, X., Qiu, X., Qiu, Y., Liu, X., Xie, D., Deng, H., Xiong, X. and Lin, Z. (2019) Upcycling of Electroplating Sludge into Ultrafine Sn@C Nanorods with Highly Stable Lithium Storage Performance. Nano Letters, 19, 1860-1866. https://doi.org/10.1021/acs.nanolett.8b04944 |
[12] | Xu, K., Ma, L., Shen, X., Ji, Z., Yuan, A., Kong, L., Zhu, G. and Zhu, J. (2019) Bimetallic Metal-Organic Framework Derived Sn-Based Nanocomposites for High-Performance Lithium Storage. Electrochimica Acta, 323, Article ID: 134855. https://doi.org/10.1016/j.electacta.2019.134855 |
[13] | Tan, Q., Kong, Z., Chen, X., Zhang, L., Hu, X., Mu, M., Sun, H., Shao, X., Guan, X., Gao, M. and Xu, B. (2019) Synthesis of SnO2/Graphene Composite Anode Materials for Lithium-Ion Batteries. Applied Surface Science, 485, 314-322.
https://doi.org/10.1016/j.apsusc.2019.04.225 |
[14] | Hu, Y., Yang, Q.-R., Ma, J., Chou, S.-L., Zhu, M. and Li, Y. (2015) Sn/SnO2@C Composite Nanofibers as Advanced Anode for Lithium-Ion Batteries. Electrochimica Acta, 186, 271-276. https://doi.org/10.1016/j.electacta.2015.10.185 |
[15] | Zeng, J., Peng, C., Wang, R., Liu, Y., Cao, C., Wang, X. and Liu, J. (2019) SnO@Amorphous TiO2 Core-Shell Composite for Advanced Lithium Storage. Ceramics International, 45, 19404-19408.
https://doi.org/10.1016/j.ceramint.2019.06.193 |