全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于灰色关联模型的黄桃采摘贮藏分析
The Analysis of Peach Harvest and Storage Based on Grey Correlation Model

DOI: 10.12677/MOS.2022.114111, PP. 1203-1210

Keywords: 灰色关联分析,一致性
Grey Relational Analysis
, Consistency

Full-Text   Cite this paper   Add to My Lib

Abstract:

为更好地筛选优质黄桃,本文通过构建灰色关联分析模型来研究黄桃品质评判指标间的关系。本文将人工评分的三个指标(色泽x2、质地x3、味道x4)取均值作为人工评分y,通过绘制散点图将y和x1、x5、x6可视化,通过拟合得出机械指标和人工评分的关系表达式,以此来研究黄桃的机械指标(果实硬度x1、TSS下降含量x5和色差x6)与人工评分之间的关系。结果表明:随果实硬度增加、TSS含量下降率增加以及色差值的增大,对应的人工评分有下降趋势。进而得出黄桃品质为优质的限制条件为机械指标中硬度x1 > 1.66 kg/cm2,TSS含量下降率x5 < 11.44%,色差x6 < 6.4747。构建灰色关联分析模型,先将人工评分y作为参考序列,人工评分(x2、x3、x4)和机械指标(x1、x5和x6)作为比较数列,计算模型比较数列和参考数列的灰色关联系数得,x1 = 0.9012,x2 = 0.9886,x3 = 0.9818,x4 = 0.9753,x5 = 0.5720,x6 = 0.8793,因此总体上评判机械指标和人工评分两类方法具有较高的一致性。
In order to better screen high-quality yellow peach, this paper studies the relationship between the quality evaluation indexes of yellow peach by constructing the grey correlation analysis model. In this paper, the mean values of the three artificial scoring indexes (color x2, texture x3, taste x4) were taken as the artificial scoring y, and y and x1、x5、x6 were visualized by plotting to scatter plot. The relationship expression between mechanical indexes and artificial scoring was obtained by fitting, so as to study the relationship between mechanical indexes (fruit firmness x1, TSS decline content x5, and color difference x6) of yellow peach and artificial scoring. The results showed that with the increase of fruit hardness, the decrease rate of TSS content and the increase of color difference, the corresponding artificial score showed a downward trend. It was further concluded that the limiting conditions for yellow peach quality to be high quality were as follows: hardness x1 > 1.66 kg/cm2, TSS content decline rate x5 < 11.44%, and color difference x6 < 6.4747 in mechanical indexes. The grey correlation analysis model is constructed. Firstly, the artificial score y is taken as the reference sequence, and the artificial score (x2、x3、x4) and mechanical index (x1、x5和x6) are taken as the comparison sequence. The grey correlation coefficients of the comparison sequence and the reference sequence of the model are calculated, and x1 = 0.9012, x2 = 0.9886, x3 = 0.9818, x4 = 0.9753, x5 = 0.5720, x6 = 0.8793. Therefore, in

References

[1]  第六届湖南省高校研究生数学建模试题发布[EB/OL]. https://lxy.hnie.edu.cn/info/1034/2286.htm, 2022-05-06.
[2]  刘莉, 张曼玲, 崔娜, 孙妍. 黄桃罐头色泽分类及感官嗜好性分析研究[J]. 中国野生植物资源, 2018, 37(2): 33-39.
[3]  张群, 舒楠, 张维, 李绮丽. 不同采收期黄桃的品质特性和微观结构变化[J]. 保鲜与加工, 2021, 21(4): 29-34.
[4]  范鹏飞. 基于机器视觉的色差检测系统研究与设计[D]: [硕士学位论文]. 无锡: 江南大学, 2016.
[5]  李运奎, 韩富亮, 张予林, 王华. 基于CIELAB色空间的红葡萄酒颜色直观表征[J]. 农业机械学报, 2017, 48(6): 296-301.
[6]  CIELAB色差计算[EB/OL]. https://blog.csdn.net/lanmengyiyu/article/details/80374211, 2021-11-20.
[7]  袁萍. 基于灰色关联分析的绿色农业产业结构优化模型研究[J]. 环境科学与管理, 2019, 44(8): 176-180.
[8]  黄晓琴, 周传猛, 梁琳, 李科冰, 陈海凤, 肖荣华. 不同香型优质常规稻品种主要农艺性状灰色关联度分析[J]. 中国种业, 2021(9): 62-66. https://doi.org/10.19462/j.cnki.1671-895x.2021.09.021
[9]  魏代巍, 魏超昆, 张惠玲. 基于灰色关联度分析肉味香精电子鼻响应值与感官评分之间的相关性[J]. 肉类研究, 2022, 36(5): 49-53.
[10]  刘书斌, 杨晓玲, 李喜香, 李成义, 冯晓莉, 张小华, 闫治攀. 基于性状鉴别与灰色关联法对不同规格大黄饮片质量比较研究[J]. 甘肃中医药大学学报, 2022, 39(2): 1-6. https://doi.org/10.16841/j.issn1003-8450.2022.02.01

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133