全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

信息粒化模型在水泥质检分析中的应用
Application of Information granulation Model in Cement Quality Inspection Analysis

DOI: 10.12677/MOS.2022.114109, PP. 1185-1194

Keywords: 信息粒化,水泥质检分析,概念格
Information Granulation
, Cement Quality Inspection Analysis, Concept Lattice

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过概念格信息粒化的方法,对水泥进行质量检测,即研究水泥样品中不合格试样不合格的指标。给出了计算水泥抗压强度特性的算法、判断水泥试样在抗压强度上是否满足行业标准的算法,以及分析不合格试样的具体不合格指标的算法,为后期试样改良,提供理论依据。研究结果表明:此方法比传统方法效率高,并结合实测,证实了此方法的实用性和有效性。
Through the method of concept lattice information granulation, the quality of cement is tested, that is, the index of unqualified cement sample is studied. The algorithm to calculate the compressive strength of cement, the algorithm to judge whether the compressive strength of cement sample meets the industry standard, and the algorithm to analyze the specific unqualified index of the unqualified sample is given, which provides a theoretical basis for the later improvement of the sample. The research results show that this method is more efficient than the traditional method, and the practicability and effectiveness of this method are verified by actual measurement.

References

[1]  GB/T12573-2009水泥取样方法[S]. 北京: 中国标准出版社, 2008.
[2]  GB/T1345-2005水泥细度检验方法筛析法[S]. 北京: 中国标准出版社, 2005.
[3]  GB/T17671-2020水泥胶砂强度检验方法(ISO法) [S]. 北京: 中国标准出版社, 2020.
[4]  GB/T1346-2012水泥标准稠度用水量、凝结时间、安定性检验方法[S]. 北京: 中国标准出版社, 2011.
[5]  彭红. 建筑材料[M]. 重庆: 重庆大学出版社, 2018.
[6]  GB175-2007通用硅酸盐水泥[S]. 北京: 中国标准出版社, 2008.
[7]  刘相阳, 夏培斋, 徐茜茜, 等. 再生细骨料水泥砂浆力学性能试验研究[J]. 混凝土, 2020(7): 106-108+113.
[8]  李十泉, 于旭峰, 操乐娟, 等. 粉煤灰改性磷酸镁水泥试验研究[J]. 混凝土, 2019(4): 111-113.
[9]  张金鑫, 卿龙邦, 王娟, 等. 钢纤维增强水泥基复合材料冲击断裂试验研究[J]. 混凝土, 2021(5): 71-74.
[10]  王海峰, 严悍东. 混凝土智能骨料及其温度和力学性能研究[J]. 应用基础与工程科学学报, 2018, 26(3): 631-639.
[11]  Ng, D.S., Paul, S.C., Anggraini, V., et al. (2020) Influence of SiO2, TiO2 and Fe2O3 Nanoparticles on the Properties of Fly Ash Blended Cement Mortars. Construction and Building Materials, 258, Arti-cle ID: 119627.
https://doi.org/10.1016/j.conbuildmat.2020.119627
[12]  Meddah, M.S., Prave, T.R., Vijayalakshmi, M., Manigandan, S. and Arunachalam, R. (2020) Mechanical and Microstructural Characterization of Rice Husk Ash and Al2O3 Nanoparticles Modified Cement Concrete. Construction and Building Materials, 255, Article ID: 119358.
https://doi.org/10.1016/j.conbuildmat.2020.119358
[13]  Yao, Y.Y. (2004) Granular Computing. Computer Science, 10, 31-35.
[14]  钱进. 多粒度决策粗糙集模型研究[J]. 郑州大学学报(理学版), 2018, 50(1): 33-38.
[15]  宋思雨, 苗夺谦. 基于多粒度空间混乱的细粒度图像分类算法[J]. 智能系统学报, 2022, 17(1): 144-150.
[16]  胡谦, 秦克云. 多粒度近似空间的模糊粗糙集模型[J]. 郑州大学学报(理学版), 2020, 52(4): 60-66.
[17]  Ganter, B. and Wille, R. (1999) Formal Concept Analysis: Mathe-matical Foundations. Springer-Verlag, New York.
https://doi.org/10.1007/978-3-642-59830-2
[18]  黄天民, 徐杨等. 格、序引论及其应用[M]. 成都: 西南交通大学出版社, 1998.
[19]  刘博, 杜建强, 刘蕾, 等. 一种面向属性的约束概念格构造算法[J]. 小型微型计算机系统, 2017, 38(11): 2580-2585.
[20]  高婷婷, 李航, 殷守林. 一种基于面部纹理特征融合的人脸表情识别方法[J]. 河北科技大学学报, 2021, 42(2): 119-126.
[21]  Zou, L., Hong, M., Song, X.Y., et al. (2021) Rule Extraction Based on Linguistic-Valued Intuitionistic Fuzzy Layered Concept Lattice. International Journal of Approximate Reasoning, 133, 1-16.
https://doi.org/10.1016/j.ijar.2020.12.018
[22]  Wu, S.L., Chen, J.H. and Wu, M.Q. (2020) Study on Stability Classification of Underground Engineering Surrounding Rock Based on Concept Lattice—TOPSIS. Arabian Journal of Geosciences, 13, 33-51.
https://doi.org/10.1007/s12517-020-05320-y
[23]  张晓鹤, 陈德刚, 米据生. 基于信息熵的对象加权概念格[J]. 智能系统学报, 2020, 15(6): 1097-1103.
[24]  李克文, 吕萌萌, 邵明文. 面向对象多粒度概念格的构造[J]. 工程数学学报, 2020, 37(5): 591-605.
[25]  贺晓丽, 刘华丽, 刘瑶瑶. 多粒度数据的区间形式概念分析方法[J]. 计算机工程与应用, 2019, 55(19): 52-57.
[26]  Larim. Lattice Miner. https://sourceforge.net/projects/lattice-miner/

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133