|
1-丁基-3-甲基咪唑氯盐/尿素低共熔溶剂的制备及结构与性能研究
|
Abstract:
以1-丁基-3-甲基咪唑氯盐(BMIMCl)和尿素(Urea)为氢键“受体”和“给体”,通过热混合的方法对BMIMCl/Urea低共熔溶剂(DES)进行了制备。研究了摩尔分数对BMIMCl/Urea体系结构的演化及低共熔溶剂形成的影响。通过表观形态、差示扫描量热分析(DSC)、二维广角X射线衍射(WAXD)和傅里叶红外(FT-IR)对制备的BMIMCl/Urea样品进行了结构表征。结果表明,随着BMIMCl摩尔分数的增加,BMIMCl/Urea体系经历了固–固相变、非晶化和溶剂化过程;BMIMCl摩尔分数为80 mol%和90 mol%时形成了BMIMCl/Urea DES。通过对BMIMCl/Urea DES样品的交流阻抗分析,发现离子液体基低共熔溶剂具有与离子液体一样的导电性。从氢键和离子液体对称性角度分析了离子液体低共熔溶剂形成机制,为开发和利用新型离子液体低共熔溶剂提供了新的参考。
1-Butyl-3-methylimidazolium chloride (BMIMCl) and urea (Urea), used as hydrogen bond “acceptors” and “donors” were mixed, stirred, heated to prepare BMIMCl/Urea DES (deep eutectic solvent). The influence of molar fraction of BMIMCl on the structure evolution of Urea and formation mechanism of ionic liquid-based DES was analyzed. Apparent morphology, differential scanning calorimetry (DSC), two-dimensional wide-angle X-ray diffraction (WAXD) and Fourier transform infrared (FT-IR) were respectively employed to characterize the structure of prepared BMIMCl/Urea samples. The results showed that the BMIMCl/Urea system underwent solid-solid phase transition, amorphization and solvation with the increasing of molar fracyion of BMIMCl. The BMIMCl/Urea DESs were formed when the mole fractions of BMIMCl were between 80 mol% and 90 mol%. The AC impedance analysis was employed to characterize the electrical property of BMIMCl/Urea DESs. It was found that the ionic liquid-based deep eutectic solvent has the same conductivity as the ionic liquid. The formation mechanism of ionic liquid-based DESs was explained by intermolecular hydrogen bonding and asymmetry structure of ionic liquid. This work provided a reference for the development and utilization of new ionic liquid deep eutectic solvents.
[1] | Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K. and Tambyrajah, V. (2003) Novel Solvent Properties of Choline Chloride Urea Mixtures. Chemical Communications, 9, 70-71. https://doi.org/10.1039/b210714g |
[2] | Pollet, P., Davey, E.A., Uren?a-Benavides, E.E., Eckert, C.A. and Liotta, C.L. (2014) Solvents for Sustainable Chemical Processes. Green Chemistry, 16, 1034-1055. https://doi.org/10.1039/C3GC42302F |
[3] | Xu, P., Zheng, G.-W., Zong, M.-H., Li, N. and Lou, W.-Y. (2017) Recent Progress on Deep Eutectic Solvents in Biocatalysis. Bioresources and Bioprocessing, 4, Article No. 34 https://doi.org/10.1186/s40643-017-0165-5 |
[4] | Khandelwal, S., Tailor, Y.K. and Kumar, M. (2016) Deep Eutectic Solvents (DESs) as Eco-friendly and Sustainable Solvent/Catalyst Systems in Organic Transformations. Journal of Molecular Liquids, 215, 345-386.
https://doi.org/10.1016/j.molliq.2015.12.015 |
[5] | Rado?evi?, K., Bubalo, M.C., Sr?ek, V.G., Grgas, D., Dragi?evi?, T.L. and Redovnikovi?, I.R. (2015) Evaluation of Toxicity and Biodegradability of Choline Chloride Based Deep Eutectic Solvents. Ecotoxicology and Environmental Safety, 112, 46-53. https://doi.org/10.1016/j.ecoenv.2014.09.034 |
[6] | Abbott, A., Barron, J., Ryder, K. and Wilson, D. (2010) Eutectic-Based Ionic Liquids with Metal-Containing Anions and Cations. Chemistry, 13, 6495-6501. https://doi.org/10.1002/chem.200601738 |
[7] | Di Marino, D., Shalaby, M., Kriescher, S. and Wessling, M. (2018) Corrosion of Metal Electrodes in Deep Eutectic Solvents. Electrochemistry Communications, 90, 101-105. https://doi.org/10.1016/j.elecom.2018.04.011 |
[8] | Oliveira, F.S., Pereiro, A.B., Rebelo, L.P. and Marrucho, I.M. (2013) Deep Eutectic Solvents as Extraction Media for Azeotropic Mixtures. Green Chemistry, 15, 1326-1330. https://doi.org/10.1039/c3gc37030e |
[9] | El Abedin, S.Z. and Endres, F. (2007) Ionic Liquids: The Link to High-Temperature Molten Salts? Accounts of Chemical Research, 40, 1106-1113. https://doi.org/10.1021/ar700049w |
[10] | Lloyd, D., Vainikka, T. and Kontturi, K. (2013) The Development of an All Copper Hybrid Redox Flow Battery Using Deep Eutectic Solvents. Electrochimica Acta, 100, 18-23. https://doi.org/10.1016/j.electacta.2013.03.130 |
[11] | Boisset, A., Menne, S., Jacquemin, J., Balducci, A. and Anouti, M. (2013) Deep Eutectic Solvents Based on N-methylacetamide and a Lithium Salt as Suitable Electrolytes for Lithium-ion Batteries. Physical Chemistry Chemical Physics, 15, 20054-20063. https://doi.org/10.1039/c3cp53406e |
[12] | Jhong, H.-R., Wong, D.S.-H., Wan, C.-C., Wang, Y.-Y. and Wei, T.-C. (2009) A Novel Deep Eutectic Solvent-based Ionic Liquid Used as Electrolyte for Dye-sensitized Solar Cells. Electrochemistry Communications, 11, 209-211.
https://doi.org/10.1016/j.elecom.2008.11.001 |
[13] | Mahanta, U., Choudhury, S., Prasanna Venkatesh, R., SarojiniAmma, S., Ilangovan, S.A. and Banerjee, T. (2019) Ionic-Liquid-Based Deep Eutectic Solvents as Novel Electrolytes for Supercapacitors: COSMO-SAC Predictions, Synthesis, and Characterization. ACS Sustainable Chemistry & Engineering, 8, 372-381.
https://doi.org/10.1021/acssuschemeng.9b05596 |
[14] | Yan, H., Zhao, L., Bai, Y., Li, F., Dong, H., Wang, H., et al. (2020) Superbase Ionic Liquid-Based Deep Eutectic Solvents for Improving CO2 Absorption. ACS Sustainable Chemistry & Engineering, 8, 2523-2530.
https://doi.org/10.1021/acssuschemeng.9b07128 |
[15] | Cao, Y., Zhang, X., Zeng, S., Liu, Y., Dong, H. and Deng, C. (2020) Protic Ionic Liquid-Based Deep Eutectic Solvents with Multiple Hydrogen Bonding Sites for Efficient Absorption of NH3. AIChE Journal, 66, Article ID: e16253.
https://doi.org/10.1002/aic.16253 |
[16] | Mishra, D.K., Gopal, P. and Tamal, B. (2020) Ionic Liquid-Based Deep Eutectic Solvent as Reaction Media for the Thermal Dehydrogenation of Ethylene Diamine-bis-Borane. ACS Sustainable Chemistry & Engineering, 8, 4910-4919.
https://doi.org/10.1021/acssuschemeng.0c00220 |
[17] | 阮佳纬, 叶香珠, 陈立芳, 漆志文. 离子液体和低共熔溶剂催化二氧化碳合成有机碳酸酯的研究进展[J]. 化工进展, 2022, 41(3): 1176-1186. |
[18] | Sheng, K., Li, D. and Kang, Y. (2021) Unexpectedly Promoted SO2 Capture in Novel Ionic Liquid-Based Eutectic Solvents: The Synergistic Interactions. Journal of Molecular Liquids, 337, Article ID: 116432.
https://doi.org/10.1016/j.molliq.2021.116432 |
[19] | 易兰, 李文英, 冯杰. 离子液体/低共熔溶剂在煤基液体分离中的应用[J]. 化工进展, 2020, 39(6): 2066-2078. |
[20] | Yuan, C., Zhang, X., Ren, Y., Feng, S., Liu, J., Wang, J., et al. (2019) Temperature- and Pressure-Induced Phase Transitions of Choline Chloride-Urea Deep Eutectic Solvent. Journal of Molecular Liquids. 291, Article ID: 111343.
https://doi.org/10.1016/j.molliq.2019.111343 |
[21] | Ammam, M. and Fransaer, J. (2011) Synthesis and Characterization of Hybrid Materials Based on 1-butyl-3-methy- limidazolium Tetrafluoroborate Ionic Liquid and Dawson-Type Tungstophosphate K7[H4PW18O62]·18H2O and K6[P2W18O62]·13H2O. Journal of Solid State Chemistry, 184, 818-824.
https://doi.org/10.1016/j.jssc.2011.02.002 |