|
时间分数阶扩散方程的一类三次有限体积元方法
|
Abstract:
本文基于应力佳点对偶网格剖分以及分片三次Lagrange插值试探函数空间和分片常数检验函数空间的三次有限体积元法和Caputo导数的L1-逼近公式构造数值格式求解一维时间分数阶扩散方程,并证明了格式的L2范数在时间和空间方向分别 阶和四阶收敛误差估计。通过数值实验验证了理论分析结果以及所提格式的有效性。
In this article, the one-dimensional time fractional diffusion equation is solved by a numerical scheme which is constructed by the L1-formula of approximating the Caputo fractional derivative and a cubic finite volume element method. The cubic finite volume element method is based on the optimal stress points dual partition, and the trial function space of piecewise cubic Lagrange inter-polation and the test function space of piecewise constant. The L2-norm error estimate of fourth or-der convergence in space and order convergence in time is proved. Numerical experiments are given to verify the effectiveness of the theoretical analysis results and the proposed scheme.
[1] | 李荣华, 陈仲英. 微分方程的广义差分法[M]. 长春: 吉林大学出版社, 1994. |
[2] | 李荣华, 祝丕奇. 二阶椭圆偏微分方程的广义差分方法(I)-三角网情形[J]. 高等学校计算数学学报, 1982, 4(2): 140-152. |
[3] | Tian, M. and Chen, Z. (1991) Quadratical Element Generalized Differential Methods for Elliptic Equations. Numerical Mathematics: A Journal of Chinese Universities, 13, 99-113. |
[4] | Liebau, F. (1996) The Finite Volume Element Method with Quadratic Basis Functions. Computing, 57, 281-299.
https://doi.org/10.1007/BF02252250 |
[5] | Chen, Z., Wu, J. and Xu, Y. (2012) Higher-Order Finite Volume Meth-ods for Elliptic Boundary Value Problems. Advances in Computational Mathematics, 37, 191-253. https://doi.org/10.1007/s10444-011-9201-8 |
[6] | Wang X. and Li, Y.H. (2016) L2 Error Estimates for High Order Finite Volume Methods on Triangular Meshes. SIAM Journal on Numerical Analysis, 54, 2729-2749. https://doi.org/10.1137/140988486 |
[7] | Zou, Q. (2017) An Unconditionally Stable Quadritic Finite Volume Scheme Over Triangular Meshes for Elliptic Equations. Journal of Scientific Computing, 70, 112-124. https://doi.org/10.1007/s10915-016-0244-3 |
[8] | Wang, T.K. and Gu, Y. (2010) Superconvergent Biquadratic Fi-nite Volume Element Method for Two-Dimensional Poisson's Equations. Journal of Computational and Applied Math-ematics, 234, 447-460.
https://doi.org/10.1016/j.cam.2009.12.036 |
[9] | Gao, G.H. and Wang, T.K. (2010) Cubic Superconvergent Finite Volume Element Method for One-dimensional Elliptic and Parabolic Equations. Journal of Computational and Applied Mathematics, 233, 2285-2301.
https://doi.org/10.1016/j.cam.2009.10.013 |
[10] | 王星, 高广花, 王同科. 半线性抛物问题的一类三次有限体积元方法[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(2): 281-284. |
[11] | 于长华, 王晓玲, 李永海. 解两点边值问题的一类修改的三次有限体积元方法[J]. 计算数学, 2010, 32(4): 385-398. |
[12] | Yu, C.H. and Li, Y.H. (2011) Biquadratic Finite Volume Element Methods Based on Optimal Stress Points for Parabolic Problem. Journal of Compu-tational and Applied Mathematics, 236, 1055-1068.
https://doi.org/10.1016/j.cam.2011.07.030 |
[13] | 杨凯丽, 何斯日古楞, 肖宇宇. 对流扩散方程的三次有限体积元法[J]. 内蒙古大学学报(自然科学版), 2021, 52(3): 250-256. |
[14] | 肖宇宇, 何斯日古楞, 杨凯丽. 对流扩散方程的时间间断时空有限体积元法[J]. 高校应用数学学报, 2021, 36(2): 179-192. |
[15] | Jiang, Y. J. and Ma, J.T. (2011) High-Order Finite Element Methods for Time-Fractional Partial Differential Equations. Journal of Computational Applied Mathematics, 235, 3285-3290. https://doi.org/10.1016/j.cam.2011.01.011 |