|
MBBR填料改性及其处理氨氮废水性能研究
|
Abstract:
随着城市工业化进程的加快,污水排放量逐年增加。其中,含氮废水的处理是一个我们迫切需要关注的问题。本试验以聚氨酯海绵为基体,提出了一种沸石粉填充聚氨酯海绵的新型生物膜载体(MS1),并将其运用于序批式生物膜反应器(MS1-SBBR)中处理氨氮废水,以期在污水处理中获得更佳效果。结果表明,改性后的生物膜载体在废水脱氮除磷方面具有良好的优异性,MS1-SBBR对NH4+-N和总磷(TP)的平均去除率比填充未改性载体的生物膜反应器(S1-SBBR)高了4%和8.9%。在微生物固定化方面,新型生物膜载体呈现出更高的微生物粘附性,运行10天后,MS1上负载微生物较未改性生物膜载体(S1)高80.3%。同时对微生物群落进行分析,发现变形菌(Proteobacteria)、拟杆菌(Bacteroidetes)以及放线菌(Actinobacteria)为其主要功能菌属,在污水处理中起重要作用。
With the acceleration of urban industrialization, sewage discharge increases year by year. Among them, the treatment of nitrogenous wastewater is a problem that we need to pay attention to urgently. In this study, a novel zeolite-filled polyurethane sponge biofilm carrier (MS1) was proposed to treat ammonia wastewater in a sequencing batch biofilm reactor (MS1-SBBR), in order to obtain better effect in wastewater treatment. The results showed that the modified biofilm carrier has a good performance in wastewater nitrogen and phosphorus removal, and the average removal rates of NH4+-N and total phosphorus (TP) by MS1-SBBR were 4% and 8.9% higher than those of the unmodified biofilm reactor (S1-SBBR). In terms of microbial immobilization, the new biofilm carrier showed higher microbial adhesion, and after 10 days of operation, the microbial load on MS1 was 80.3% higher than that of the unmodified biofilm carrier (S1). At the same time, the analysis of the microbial community found that Proteobacteria, Bacteroidetes and Actinobacteria were the main functional bacteria, which played an important role in sewage treatment.
[1] | Winkler, M.K. and Straka, L. (2019) New Directions in Biological Nitrogen Removal and Recovery from Wastewater. Current Opinion in Biotechnology, 57, 50-55. https://doi.org/10.1016/j.copbio.2018.12.007 |
[2] | Reshma, A., Donna, D., Niclas, K. and Burak, D. (2017) Methods of Ammonia Removal in Anaerobic Digestion: A Review. Water Science & Technology, 76, 1925-1938. https://doi.org/10.2166/wst.2017.406 |
[3] | Zhang, L., Xu, E.G., Li, Y.B., Liu, H.L., Vidal, D.E. and Giesy, J.P. (2018) Ecological Risks Posed by Ammonia Nitrogen (AN) and Un-Ionized Ammonia (NH3) in Seven Major River Systems of China. Chemosphere, 202, 136-144.
https://doi.org/10.1016/j.chemosphere.2018.03.098 |
[4] | Guo, W.S., Ngo, H.H., Dharmawan, F. and Palmer, C. (2010) Roles of Polyurethane Foam in Aerobic Moving and Fixed Bed Bioreactors. Bioresource Technology, 101, 1435-1439. https://doi.org/10.1016/j.biortech.2009.05.062 |
[5] | 彭兰勤, 李彦锋. 水性聚氨酯涂料改性研究进展[C]//2009全国功能材料科技与产业高层论坛. 全国功能材料科技与产业高层论坛论文集: 2009年卷. 镇江: 中国仪器仪表学会, 2009: 548-551. |
[6] | 郭静波, 马放, 蒋侃, 徐善文, 崔迪. 用于石化废水处理的聚氨酯泡沫球形载体的挂膜方法[J]. 环境工程学报, 2008, 2(10): 1322-1326. |
[7] | 蒋鸿辉, 黄新. 江西白云山电气石粉体对水pH值的影响和机理研究[J]. 河南科技, 2009(21): 39-40. |
[8] | 张晟瑀, 林学钰, 周兰影, 牧辉, 高文武, 戴宁. 沸石联合微生物固定化去除微污染水体中氨氮的研究[J]. 环境污染与防治, 2009, 31(4): 14-17+20. |
[9] | 郭俊元, 杨春平, 邱国良. 生物絮凝剂与改性沸石复配处理猪场废水厌氧消化液的响应面优化[J]. 中国环境科学, 2012, 32(11): 1999-2005. |
[10] | Jiang, S.Y., Yan, L.L., Wang, R.K., Li, G.H., Rao, P.H., Ju, M.C., Jian, L., Guo, X. and Che, L. (2022) Recyclable Nitrogen-Doped biochar via Low-Temperature Pyrolysis for Enhanced Lead(II) Removal. Chemosphere, 286, Article ID: 131666. https://doi.org/10.1016/j.chemosphere.2021.131666 |
[11] | Zhang, H.Y., Li, A.M., Zhang, W. and Shuang, C.D. (2016) Combination of Na-Modified Zeolite and Anion Exchange Resin for Advanced Treatment of a High Ammonia-Nitrogen Content Municipal Effluent. Journal of Colloid and Interface Science, 468, 128-135. https://doi.org/10.1016/j.jcis.2015.10.006 |
[12] | Fan, J.W., Wu, H.X., Liu, R.Y., Meng, L.Y., Fang, Z., Liu, F. and Xu, Y.H. (2020) Non-Thermal Plasma Combined with Zeolites to Remove Ammonia Nitrogen from Wastewater. Journal of Hazardous Materials, 401, Article ID: 123627. https://doi.org/10.1016/j.jhazmat.2020.123627 |
[13] | Johnbull, D., Conroy, N.A., Yu, X., Brian, A.P., John, C.S., Maxim, I.B., Kenneth, M.K. and Daniel, I.K. (2020) Surfactant-Modified Siliceous Zeolite Y for Pertechnetate Remediation. Chemical Engineering Journal, 402, Article ID: 126268. https://doi.org/10.1016/j.cej.2020.126268 |
[14] | Wang, X.W. and Wu, P.Y. (2018) Melamine Foam-Supported 3D Interconnected Boron Nitride Nanosheets Network Encapsulated in Epoxy to Achieve Significant Thermal Conductivity Enhancement at an Ultralow Filler loading. Chemical Engineering Journal, 348, 723-731. https://doi.org/10.1016/j.cej.2018.04.196 |
[15] | Hai, R.T., He, Y.Q., Wang, X.H. and Li, Y. (2015) Simultaneous Removal of Nitrogen and Phosphorus from Swine Wastewater in a Sequencing Batch Biofilm Reactor. Chinese Journal of Chemical Engineering, 23, 303-308.
https://doi.org/10.1016/j.cjche.2014.09.036 |
[16] | Li, J.B., Wei, J.L., Hao H.N., Guo, W.S., Liu, H.B., Du, B., Wei, Q. and Wei, D. (2018) Characterization of Soluble Microbial Products in a Partial Nitrification Sequencing Batch Biofilm Reactor Treating High Ammonia Nitrogen Wastewater. Bioresource Technology, 249, 241-246. https://doi.org/10.1016/j.biortech.2017.10.013 |
[17] | Wei, D., Shi, L., Yan, T., Zhang, G., Wang, Y.F. and Du, B. (2014) Aerobic Granules Formation and Simultaneous Nitrogen and Phosphorus Removal Treating High Strength Ammonia Wastewater in Sequencing Batch Reactor. Bioresource Technology, 171, 211-216. https://doi.org/10.1016/j.biortech.2014.08.001 |
[18] | Wu, N., Wei, D., Zhang, Y.F., Xu, W.Y., Yan, T., Du, B. and Wei, Q. (2016) Comparison of Soluble Microbial Products Released from Activated Sludge and aerObic Granular Sludge Systems in the Presence of Toxic 2,4-Dichlorophenol. Bioprocess and Biosystems Engineering, 40, 309-318. https://doi.org/10.1007/s00449-016-1698-2 |
[19] | Feng, L.J., Jia, R., Zeng, Z., Yang, G.F. and Xu, X.Y. (2018) Simultaneous Nitrification-Denitrification and Microbial Community Profile in an Oxygen-Limiting Intermittent Aeration SBBR with Biodegradable Carriers. Biodegradation, 29, 473-486. https://doi.org/10.1007/s10532-018-9845-x |
[20] | Zhang, X.Y., Zhou, X.T., Xie, Y.J., Rong, X.S., Liu, Z.G., Xiao, X., Liang, Z.S., Jiang, S.Y., Wei, J. and Wu, Z.R. (2019) A Sustainable Bio-Carrier Medium for Wastewater Treatment: Modified Basalt Fiber. Journal of Cleaner Production, 225, 472-480. https://doi.org/10.1016/j.jclepro.2019.03.333 |
[21] | Dong, H.C., Liu, H.M., Yang, X., Gong, H.J., Zhang, H., Wang, R.K., Yan L.L. and Mai, W.N. (2021) The Effect of Initial Conditions with Aerobic Biological Treatment on Aniline Dyeing Wastewater. Processes, 9, Article No. 1329.
https://doi.org/10.3390/pr9081329 |
[22] | Chao, C.F., Zhao, Y.X., Keskar, J., Ji, M., Wang, Z.J. and Li, X. (2020) Simultaneous Removal of COD, Nitrogen and Phosphorus and the Tridimensional Microbial Response in a Sequencing Batch Biofilm Reactor: With Varying C/N/P Ratios. Biochemical Engineering Journal, 154, Article ID: 107215. https://doi.org/10.1016/j.bej.2019.04.017 |
[23] | Liu, Q., Yang, Y., Mei, X., Liu, B., Chen, C. and Xing, D. (2018) Response of the Microbial Community Structure of Biofilms to Ferric Iron in Microbial Fuel Cells. The Science of the Total Environment, 631-632, 8503-8509.
https://doi.org/10.1016/j.scitotenv.2018.03.008 |
[24] | Wang, L., Li, Y., Wang, L., Zhu, M., Zhu, X., Qian, C. and Li, W. (2018) Responses of Biofilm Microorganisms from Moving Bed Biofilm Reactor to Antibiotics Exposure: Protective Role of Extracellular Polymeric Substances. Bioresource Technology, 254, 268-277. https://doi.org/10.1016/j.biortech.2018.01.063 |
[25] | Wang, X., Bi, X., Hem, L.J. and Ratnaweera, H. (2018) Microbial Community Composition of a Multi-Stage Moving Bed Biofilm Reactor and Its Interaction with Kinetic Model Parameters Estimation. Journal of Environmental Management, 218, 340-347. https://doi.org/10.1016/j.jenvman.2018.04.015 |
[26] | Atabek, A. and Camesano, T.A. (2007) Atomic Force Microscopy Study of the Effect of Lipopolysaccharides and Extracellular Polymers on Adhesion of Pseudomonas Aeruginosa. Journal of Bacteriology, 189, 8503-8509.
https://doi.org/10.1128/JB.00769-07 |
[27] | Wei, Z.Y., Hao, J., Sun, J.S. and Shi, J.P. (2016) Isolation of Raoultella sp. sari01 and Its Heterotrophic Nitrification-Aerobic Denitrification Characteristics. Environmental Science, 37, 2673-2680.
https://www.cnki.net/kcms/doi/10.13227/j.hjkx.2016.07.034.html |
[28] | Tang, B., Chen, Q., Bin, L., Huang, S., Zhang, W., Fu, F. and Li, P. (2018) Insight into the Microbial Community and Its Succession of a Coupling Anaerobic-Aerobic Biofilm on Semi-Suspended Bio-Carriers. Bioresource Technology, 247, 591-598. https://doi.org/10.1016/j.biortech.2017.09.147 |
[29] | Biswas, K., Taylor, M.W. and Turner, S.J. (2014) Successional Development of Biofilms in Moving Bed Biofilm Reactor (MBBR) Systems Treating Municipal Wastewater. Applied Microbiology & Biotechnology, 98, 1429-1440.
https://doi.org/10.1007/s00253-013-5082-8 |
[30] | Shapleigh, J.P. (2011) Oxygen Control of Nitrogen Oxide Respiration, Focusing on α-Proteobacteria. Enzymology and Ecology of the Nitrogen Cycle, 39, 179-183. https://doi.org/10.1042/BST0390179 |
[31] | Aziz, H.A., Puat, N.N.A., Alazaiza, M.Y.D. and Hung, Y.T. (2018) Poultry Slaughterhouse Wastewater Treatment Using Submerged Fibers in an Attached Growth Sequential Batch Reactor. International Journal of Environmental Research and Public Health, 15, Article No. 1734. https://doi.org/10.3390/ijerph15081734 |
[32] | Wang, J., Rong, H. and Zhang, C. (2018) Evaluation of the Impact of Dissolved Oxygen Concentration on Biofilm Microbial Community in Sequencing Batch Biofilm Reactor. Journal of Bioscience and Bioengineering, 125, 532-542.
https://doi.org/10.1016/j.jbiosc.2017.11.007 |
[33] | Jin, Y.X., Ding, D.H., Feng, C.P., Tong, S., Suemura, T. and Zhang, F. (2012) Performance of Sequencing Batch Biofilm Reactors with Different Control Systems in Treating Synthetic Municipal Wastewater. Bioresource Technology, 104, 12-18. https://doi.org/10.1016/j.biortech.2011.08.086 |
[34] | Zhao, Y.X., Chao, C.F., Zhai, S.Y., Wang, Z.J. and Ji, M. (2017) Treatment of Rural Wastewater Using a Spiral Fiber Based Salinity-Persistent Sequencing Batch Biofilm Reactor. Water, 9, Article No. 970.
https://doi.org/10.3390/w9120970 |
[35] | Zhang, G.Z., Ma, K., Zhang, Z.X., Shang, X.B. and Wu, F.P. (2020) Waste Brick as Constructed Wetland Fillers to Treat the Tail Water of Sewage Treatment Plant. Bulletin of Environmental Contamination and Toxicology, 104, 273-281.
https://doi.org/10.1007/s00128-020-02782-4 |
[36] | Li, L.L., Zhang, M., Jiang, W.Q. and Yang, P. (2022) Study on the Efficacy of Sodium Alginate Gel Particles Immobilized Microorganism SBBR for Wastewater Treatment. Journal of Environmental Chemical Engineering, 10, Article ID: 107134. https://doi.org/10.1016/j.jece.2022.107134 |
[37] | Zhou, D.K. (2013) Activated Carbon Fiber Felt and Polymer Fiber as Biofilm Carrier in a Modified University of Cape Town Process for Sewage Treatment. Water Science and Technology, 68, 1151-1157.
https://doi.org/10.2166/wst.2013.355 |