全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于熵守恒格式的浅水波方程的熵稳定格式
An Entropy Stable Scheme for Shallow Water Equations Based on Entropy Conservative Scheme

DOI: 10.12677/AAM.2022.118596, PP. 5648-5659

Keywords: 熵守恒,熵稳定,熵不等式,浅水波方程,Burgers方程
Entropy Conservation
, Entropy Stable, Entropy Inequality, Shallow Water Equation, Burgers Equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

在本文中,我们针对流体力学中的Burgers方程以及浅水波方程,构造了高精度熵稳定格式。我们首先以熵守恒数值通量为基础,通过添加适当的数值熵粘性的方式,构造了熵稳定数值通量,实现了熵不等式,最终建立了熵稳定数值格式。广泛的数值结果均验证了本格式保持高分辨率和无伪振荡的良好特性。我们相信该格式在流体力学领域会有着相当广泛的应用前景。
In this article, we aim at building high-order entropy stable scheme for the Burgers equation and shallow water equation in fluid mechanics. Based on the entropy conservative numerical flux, we first construct the entropy stable numerical flux by adding appropriate numerical entropy viscosity, then achieve the entropy inequality, and achieve the entropy stable finite difference scheme even-tually. Extensive numerical results illustrate that the resulting scheme keeps high resolution and is free of spurious oscillations. We believe that this scheme will have a wide application prospect in the field of fluid mechanics.

References

[1]  Dafermos, C. (2000) Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin.
https://doi.org/10.1007/978-3-662-22019-1
[2]  Duan, J.M. and Tang, H.Z. (2021) High-Order Accurate Entropy Stable Finite Difference Schemes for the Shallow Water Magnetohydrodynamics. Journal of Computational Physics, 431, Article ID: 110136.
https://doi.org/10.1016/j.jcp.2021.110136
[3]  Crandall, M.G. and Majda, A. (1980) Monotone Difference Ap-proximations for Scalar Conservation Laws. Mathematics of Computation, 34, 1-21.
https://doi.org/10.1090/S0025-5718-1980-0551288-3
[4]  Tadmor, E. (1987) The Numerical Viscosity of Entropy Stable Schemes for Systems of Conservation Laws I. Mathematics of Computation, 49, 91-103.
https://doi.org/10.1090/S0025-5718-1987-0890255-3
[5]  Tadmor, E. (2003) Entropy Stability Theory for Differ-ence Approximations of Nonlinear Conservation Laws and Related Time-Dependent Problem. Acta Numerica, 12, 451-512.
https://doi.org/10.1017/S0962492902000156
[6]  Ismail, F. and Roe, P.L. (2009) Affordable. Entro-py-Consistent Euler Flux Functions II: Entropy Production at Shocks. Journal of Computational Physics, 228, 5410-5436.
https://doi.org/10.1016/j.jcp.2009.04.021
[7]  Liu, Y., Feng, J. Ren, J. (2015) High Resolution Entro-py-Consistent Scheme Using Flux Limiter for Hyperbolic Systems of Conservation Laws. Journal of Scientific Compu-ting, 64, 914-937.
https://doi.org/10.1007/s10915-014-9949-3
[8]  Ren, J., Wang, G., Feng, J.H. and Ma, M.S. (2017) Study of Flux Limiters to Minimize the Numerical Dissipation Based on Entropy-Consistent Scheme. Journal of Mechanics, 34, 135-149.
https://doi.org/10.1017/jmech.2017.53
[9]  Lefloch, P.G., Mercier, J.M. and Rohde, C. (2002) Fully Discrete, Entropy Conservative Schemes of Arbitrary Order. SIAM Journal on Numerical Analysis, 40, 1968-1992.
https://doi.org/10.1137/S003614290240069X
[10]  Fjordholm, U.S., Mishra, S. and Tadmor, E. (2012) Arbitrarily High-Order Accurate Entropy Stable Essentially Nonoscillatory Schemes for Systems of Conservation Laws. SIAM Journal on Numerical Analysis, 52, 544-573.
https://doi.org/10.1137/110836961
[11]  Biswas, B. and Dubey, R.K. (2017) Low Dissipative Entropy Stable Schemes Using Third Order WENO and TVD Reconstructions. Advances in Computational Mathematics, 44, 1153-1181.
https://doi.org/10.1007/s10444-017-9576-2
[12]  Ray, D., Chandrashekar, P., Fjordholm, U.S. and Mishra, S. (2016) Entropy Stable Scheme on Two-Dimensional Unstructured Grids for Euler Equations. Communica-tions in Computational Physics, 19, 1111-1140.
https://doi.org/10.4208/cicp.scpde14.43s
[13]  Fjordholm, U.S. and Ray, D. (2016) A Sign Preserving WENO Re-construction Method. Journal of Scientific Computing, 68, 42-63.
https://doi.org/10.1007/s10915-015-0128-y
[14]  Ray, D. (2018) A Third-Order Entropy Stable Scheme for the Compressible Euler Equations. 16th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Aachen, 2-5 August 2018, 503-515.
https://doi.org/10.1007/978-3-319-91548-7_38
[15]  Toro, E.F. (2001) Shock-Capturing Methods for Free-Surface Shallow Flows. John Wiley & Sons, Hoboken.
[16]  Toro, E.F. (2009) Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin.
https://doi.org/10.1007/b79761
[17]  Tadmor, E. and Zhong, W. (2008) Energy Preserving and Stable Approxima-tions for the Two-Dimensional Shallow Water Equations. In: Munthe-Kaas, H. and Owren, B., Eds., Mathematics and Computation: A Contemporary View, Springer, Berlin, 67-94.
https://doi.org/10.1007/978-3-540-68850-1_4
[18]  Fjordholm, U.S., Mishra, S. and Tadmor, E. (2009) Energy Preserving and Energy Stable Schemes for the Shallow Water Equations. In: Cucker, F., Pinkus, A. and Todd, M., Eds., Foundations of Computational Mathematics, Springer, Berlin, 93-139.
https://doi.org/10.1017/CBO9781139107068.005
[19]  Duan, J.M. and Tang, H.Z. (2021) Entropy Sable Adaptive Moving Mesh Schemes for 2D and 3D Special Relativistic Hydrodynamics. Journal of Computational Physics, 426, Ar-ticle ID: 109949.
https://doi.org/10.1016/j.jcp.2020.109949
[20]  Duan, J.M. and Tang, H.Z. (2020) High-Order Accurate Entropy Stable Nodal Discontinuous Galerkin Schemes for the Ideal Special Relativistic Magnetohydrodynamics. Journal of Computational Physics, 421, Article ID: 109731.
https://doi.org/10.1016/j.jcp.2020.109731
[21]  Duan, J.M. and Tang, H.Z. (2020) High-Order Accurate Entropy Stable Finite Difference Schemes for One- and Two-Dimensional Special Relativistic Hydrodynamics. Advances in Ap-plied Mathematics and Mechanics, 12, 1-29.
https://doi.org/10.4208/aamm.OA-2019-0124
[22]  Harten, A., Hyman, J.M. and Lax, P.D. (1976) On Finite Dif-ference Approximations and Entropy Conditions for Shocks. Communications on Pure and Applied Mathematics, 29, 297-322.
https://doi.org/10.1002/cpa.3160290305
[23]  Kruzhkov, N. (1970) First Order Quasi-Linear Equations in Several Independent Variables. Mathematics of the USSR-Sbornik, 10, 217-243.
https://doi.org/10.1070/SM1970v010n02ABEH002156
[24]  Oleinik, O.A. (1957) Discontinuous Solutions of Nonlinear Differential Equations. Uspekhi Matematicheskikh Nauk, 12, 3-73.
[25]  Osher, S. (1984) Riemann Solvers, the Entropy Condition, and Difference Approximations. SIAM Journal on Numerical Analysis, 21, 217-235.
https://doi.org/10.1137/0721016
[26]  Yang, Z.G., Lin, L.L. and Dong, S.C. (2019) A Family of Second-Order En-ergy-Stable Schemes for Cahn-Hilliard Type Equations. Journal of Computational Physics, 383, 24-54.
https://doi.org/10.1016/j.jcp.2019.01.014

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133