全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

硝胺类炸药激光点火研究进展
Research Progress of Laser Ignition of Nitro-Amine Explosives

DOI: 10.12677/JAPC.2022.113015, PP. 122-133

Keywords: 硝胺炸药,激光点火,点火机理,数学模型,掺杂光敏材料
Nitro-Amine Explosives
, Laser Ignition, Ignition Mechanism, Mathematical Model, Doped-Photosensitive Materials

Full-Text   Cite this paper   Add to My Lib

Abstract:

激光点火技术相较于传统点火方式有更好的安全性、可控性和高效性,被广泛运用于各类高精尖武器系统中。对高能硝胺炸药的激光点火进行研究具有实际意义。从点火机理、点火模型以及掺杂光敏材料三个方面对近三十年来硝胺炸药激光点火研究的进展进行分析,总结出:硝胺炸药的激光解离经由最弱键N-NO2键断裂、发生开环反应,解离成小的碎片或中性粒子后发生次级反应;硝胺炸药与激光束之间的作用存在强吸收波长和弱吸收波长,遵循朗伯–比尔定律,弱吸收波长激光更易引起炸药晶体缺陷处的热点形成;影响激光点火效应的因素主要有炸药的组成和晶体缺陷及粒径、激光波长及激光功率密度、激光点火环境因素等;在建立激光点火数学模型时必须考虑整个燃烧区的瞬态发展,包括气相和凝聚相;掺杂光敏材料如炭黑、金属纳米颗粒、碳纳米管等可以降低硝胺炸药激光点火阈值和点火延迟时间。
As a modern initiation mode of energetic materials, laser ignition technology is much safer, controllable and efficient in comparison with conventional ignition methods, and is widely used in various sophisticated weapon systems. It is important to study the laser ignition of high nitro-amine explosives. The research progress of laser ignition of nitro-amine explosives in recent 30 years is analyzed from three aspects: laser ignition mechanism, ignition model and doping photosensitive materials. It is concluded that: Laser dissociation of nitro-amine explosives occurs through the weakest N-NO2 bond broken down and the ring opened; then secondary reactions occur after dissociation into small fragments or neutral particles. The interaction between nitrosamine explosives and the laser beam has a strong absorption wavelength and a weak absorption wavelength, following the Beer-Lambert Law, and the weak absorption wavelength laser is more likely to cause the formation of hot spots at the dynamite crystal defect. The factors affecting the laser ignition action mainly include the composition of explosives and the crystal defects and particle size, laser wavelength and laser power density, laser ignition environment factors, etc. Transient development of the entire combustion region must be taken into account in establishing a mathematical model of laser ignition, including the gas and condensed phases; Doped photosensitive materials such as carbon black, metal nanoparticles, and carbon nanotubes can reduce the laser ignition threshold and ignition delay time of nitro-amine explosives.

References

[1]  胡艳, 沈瑞琪, 叶迎华. 激光点火技术的发展[J]. 含能材料, 2000, 8(3): 141-144.
[2]  项仕标. 现代激光应用技术——激光点火[J]. 现代物理知识, 1999(1): 20-21.
[3]  沈美. 激光与含能材料相互作用机理研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2004.
[4]  ?stmark, H., Carlson, M. and Ekvall, K. (1994) Laser Ignition of Explosives: Effects of Laser Wavelength on the Threshold Ignition Energy. Journal of Energetic Materials, 12, 63-83.
https://doi.org/10.1080/07370659408019339
[5]  ?stmark, H., Carlson, M. and Ekvall, K. (1996) Concentration and Temperature Measurements in a Laser-Induced High Explosive Ignition Zone. Part I: LIF Spectroscopy Measurements. Combustion and Flame, 105, 381-390.
https://doi.org/10.1016/0010-2180(96)00223-4
[6]  Ramaswamy, A.L. and Field, J.E. (1996) Laser-Induced Ignition of Single Crystals of the Secondary Explosive Cyclotrimethylene Trinitramine. Journal of Applied Physics, 79, 3842-3847.
https://doi.org/10.1063/1.361812
[7]  Ali, A.N., Son, S.F., Asay, B.W., et al. (2003) High-Irradiance Laser Ignition of Explosives. Combustion Science and Technology, 175, 1551-1571.
https://doi.org/10.1080/00102200302358
[8]  Chernai, A.V., Sobolev, V.V., Chernai, V.A., et al. (2003) Laser Ignition of Explosive Compositions Based on Di-(3-Hydrazino-4-Amino-1,2,3-Triazole)-Copper(II) Perchlorate. Combustion, Explosion and Shock Waves, 39, 335-339.
https://doi.org/10.1023/A:1023852505414
[9]  韦爱勇, 郭学彬, 张杰涛. 常用火工品药剂激光起爆试验研究[J]. 含能材料, 2004, 12(4): 243-245.
[10]  Harkoma, M. (2010) Confinement in the Diode Laser Ignition of Energetic Materials. Doctor’s Thesis, Tampere University, Tampere.
[11]  McGrane, S.D. and Moore, D.S. (2011) Continuous Wave Laser Irradiation of Explosives. Propellants, Explosives, Pyrotechnics, 36, 327-334.
https://doi.org/10.1002/prep.201100010
[12]  田占东, 卢芳云, 张震宇, 赵剑衡, 谭福利. RDX激光点火特性数值分析[J]. 含能材料, 2012, 20(1): 53-56.
[13]  Chen, M.W., You, S., Suslick, K.S., et al. (2014) Hot Spot Generation in Energetic Materials Created by Long-Wavelength Infrared Radiation. Applied Physics Letters, 104, Article ID: 061907.
https://doi.org/10.1063/1.4865258
[14]  Li, L.B., Chen, X., Zhou, C.S., et al. (2017) Experimental Investigation on Laser Ignition and Combustion Characteristics of NEPE Propellant. Propellants, Explosives, Pyrotechnics, 42, 1095-1103.
https://doi.org/10.1002/prep.201700059
[15]  Gillard, P., Courty, L., De Persis, S., et al. (2018) Combustion Properties of a Low-Vulnerability Propellant: An Experimental and Theoretical Study Using Laser Ignition. Journal of Energetic Materials, 36, 362-374.
https://doi.org/10.1080/07370652.2018.1439126
[16]  Courty, L., Gillard, P., Ehrhardt, J., et al. (2021) Experimental Determination of Ignition and Combustion Characteristics of Insensitive Gun Propellants Based on RDX and Nitrocellulose. Combustion and Flame, 229, Article ID: 111402.
https://doi.org/10.1016/j.combustflame.2021.111402
[17]  Hu, P., Xian, M., Wu, L., et al. (2021) Laser Ignition of a Laser-Thermal Differential Composite System Based on Non-Uniform Absorption. Chemical Engineering Journal, 421, Article ID: 127869.
https://doi.org/10.1016/j.cej.2020.127869
[18]  刘建, 熊鹰, 蒋小华, 蒋明. 含能材料激光诱导起爆特征波长解析[J]. 激光技术, 2013, 37(6): 816-819.
[19]  张伟. 典型含能化合物的激光解离机理研究[D]: [博士学位论文]. 南京: 南京理工大学, 2014.
[20]  Yan, Z., Zhang, C., Liu, W., et al. (2016) Ultraviolet Laser-Induced Ignition of RDX Single Crystal. Scientific Reports, 6, Article No. 20251.
https://doi.org/10.1038/srep20251
[21]  Yan, Z., Liu, W., Jiang, Y., et al. (2018) Laser Initiation of RDX Crystal Slice under Ultraviolet and Near-Infrared Irradiations. Combustion and Flame, 190, 112-118.
https://doi.org/10.1016/j.combustflame.2017.11.013
[22]  McBain, A., Vuppuluri, V., Gunduz, I.E., et al. (2018) Laser Ignition of CL-20 (Hexanitrohexaazaisowurtzitane) Cocrystals. Combustion and Flame, 188, 104-115.
https://doi.org/10.1016/j.combustflame.2017.09.017
[23]  刘彦汝, 孙杰, 金波, 徐金江, 黄石亮, 李诗纯, 张浩斌. 360 nm紫外激光辐照下HMX晶体的微观结构变化[J]. 含能材料, 2021, 29(12): 1208-1215.
[24]  Dolgachev, V., Khaneft, A. and Mitrofanov, A. (2018) Ignition of Organic Explosive Materials by a Copper Oxide Film Absorbing a Laser Pulse. Propellants, Explosives, Pyrotechnics, 43, 992-998.
https://doi.org/10.1002/prep.201800142
[25]  Khaneft, A.V., Dolgachev, V.A. and Rybin, S.A. (2019) The Effect of Metal Film Thickness on Ignition of Organic Explosives with a Laser Pulse. Molecules, 24, Article No. 4600.
https://doi.org/10.3390/molecules24244600
[26]  高东升. 激光与含能材料相互作用机理研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2006.
[27]  Skocypec, R.D., Mahoney, A.R., Glass, M.W., et al. (1990) Modeling Laser Ignition of Explosives and Pyrotechnics: Effects and Characterization of Radiative Transfer. Sandia National Laboratories, Albuquerque, NM.
[28]  Ewick, D.W. (1994) Improved 2-D Finite Difference Model for Laser Diode Ignited Components. Proceedings of the 18th International Pyrotechnic Seminar, Breckenridge, 25-29 July 1994, 255-266.
[29]  Liau, Y.C., Kim, E.S. and Yang, V. (2001) A Comprehensive Analysis of Laser-Induced Ignition of RDX Monopropellant. Combustion and Flame, 126, 1680-1698.
https://doi.org/10.1016/S0010-2180(01)00281-4
[30]  Liau, Y.C. and Lyman, J.L. (2002) Modeling Laser-Induced Ignition of Nitramine Propellants with Condensed and Gas-Phase Absorption. Combustion Science and Technology, 174, 141-171.
https://doi.org/10.1080/713712998
[31]  Meredith, K.V., Gross, M.L. and Beckstead, M.W. (2015) Laser-Induced Ignition Modeling of HMX. Combustion and Flame, 162, 506-515.
https://doi.org/10.1016/j.combustflame.2014.08.004
[32]  王育维, 张明安. 激光点火过程的二维数值模拟[J]. 火炮发射与控制学报, 2003(4): 1-4+14.
[33]  王震. 含能材料激光点火过程的模型建立及其数值计算[D]: [硕士学位论文]. 南京: 南京理工大学, 2004.
[34]  Lee, K., Kim, K. and Yoh, J.J. (2008) Modeling of High Energy Laser Ignition of Energetic Materials. Journal of Applied Physics, 103, Article ID: 083536.
https://doi.org/10.1063/1.2909271
[35]  王茜. 炸药的激光起爆特性及规律研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2008.
[36]  Tian, Z., Zhang, Z., Lu, F., et al. (2014) Modeling and Simulation of Laser-Induced Ignition of RDX Using Detailed Chemical Kinetics. Propellants, Explosives, Pyrotechnics, 39, 838-843.
https://doi.org/10.1002/prep.201400064
[37]  Dolgachev, V.A., Duginov, E.V. and Khaneft, A.V. (2017) Simulation of the Ignition of Organic Explosives by a Laser Pulse in the Weak Absorption Region. Combustion, Explosion, and Shock Waves, 53, 211-218.
https://doi.org/10.1134/S0010508217020125
[38]  Beckstead, M.W., Puduppakkam, K., Thakre, P., et al. (2007) Modeling of Combustion and Ignition of Solid-Propellant Ingredients. Progress in Energy and Combustion Science, 33, 497-551.
https://doi.org/10.1016/j.pecs.2007.02.003
[39]  盛涤伦, 朱雅红, 陈利魁, 等. 激光与含能化合物相互作用机理研究[J]. 含能材料, 2008, 16(5): 481-486.
[40]  Ahmad, S.R., Russell, D.A. and Golding, P. (2009) Laser-Induced Deflagration of Unconfined HMX—The Effect of Energetic Binders. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials, 34, 513-519.
https://doi.org/10.1002/prep.200800090
[41]  Fang, X., Sharma, M., Stennett, C., et al. (2017) Optical Sensitisation of Energetic Crystals with Gold Nanoparticles for Laser Ignition. Combustion and Flame, 183, 15-21.
https://doi.org/10.1016/j.combustflame.2017.05.002
[42]  Monat, J.E., Tersine, E.G., Morgan, B.A., et al. (2007) Ignition of TNT Using a CO2 Laser. AIP Conference Proceedings, 955, 845-848.
https://doi.org/10.1063/1.2833257
[43]  Fang, X., Stone, M. and Stennett, C. (2020) Pulsed Laser Irradiation of a Nanoparticles Sensitised RDX Crystal. Combustion and Flame, 214, 387-393.
https://doi.org/10.1016/j.combustflame.2020.01.009
[44]  Churchyard, S., Fang, X. and Vrcelj, R. (2019) Laser Ignitibility of Energetic Crystals Doped with Gold Nanoparticles. Optics & Laser Technology, 113, 281-288.
https://doi.org/10.1016/j.optlastec.2018.12.021
[45]  Cao, W., Guo, W., Ding, T., et al. (2020) Laser Ablation of Aluminized RDX with Added Ammonium Perchlorate or Ammonium Perchlorate/Boron/Magnesium Hydride. Combustion and Flame, 221, 194-200.
https://doi.org/10.1016/j.combustflame.2020.07.045
[46]  Aduev, B.P., Nurmukhametov, D.R., Liskov, I.Y., et al. (2020) Laser Pulse Initiation of RDX-Al and PETN-Al Composites Explosion. Combustion and Flame, 216, 468-471.
https://doi.org/10.1016/j.combustflame.2019.10.037
[47]  Li, H., Liu, B., Xu, Y., et al. Tunable Catalytic Activity of Energetic Multi-Metal Hexanitro Complexes for RDX Decomposition and Ignition. Journal of Analytical and Applied Pyrolysis, 2021, Article ID: 105228.
https://doi.org/10.1016/j.jaap.2021.105228
[48]  Ewick, D.W., Beckman, T.M., Holy, J.A., et al. (1990) Ignition of HMX (Cyclotetramethylenetetranitramine) Using Low Energy Laser Diodes. EG and G Mound Applied Technologies, Miamisburg, OH.
[49]  王惠娥, 沈瑞琪, 叶迎华, 吴立志, 张伟. 碳纳米管和碳黑掺杂RDX和HMX的反应性光声谱[J]. 火炸药学报, 2013, 36(1): 34-37.
[50]  Ji, X., Qin, W., Li, X., et al. (2018) Initiation of CL-20 Doped with Aluminum Nanoparticles by Using a Laser Pulse through an Optical Fiber. Propellants, Explosives, Pyrotechnics, 43, 1210-1214.
https://doi.org/10.1002/prep.201800191
[51]  Konovalov, A.N., Yudin, N.V., Kolesov, V.I., et al. (2019) Increasing the Heating Efficiency and Ignition Rate of Certain Secondary Explosives with Absorbing Particles under Continuous Infrared Laser Radiation. Combustion and Flame, 205, 407-414.
https://doi.org/10.1016/j.combustflame.2019.04.026
[52]  冯长根, 刘柳, 覃文志, 周阳, 何碧, 甘强. 掺杂光敏物质用于降低火工药剂激光发火阈值研究进展[J]. 兵工学报, 2020, 41(11): 2347-2361.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133