全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于无人机影像特征优选的山地地区植被分类
Vegetation Classification in Mountainous Areas Based on UAV Image Feature Selection

DOI: 10.12677/AAM.2022.118601, PP. 5692-5701

Keywords: 丘陵地区,随机森林,Relief F,CFS,多尺度分割
Hilly Area
, Random Forest, Relief F, CFS, Multi-Scale Segmentation

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对山地丘陵地区无人机影像分类尺度难以确定,特征数量维数过高,分类精度较低的问题。研究首先确定最优分割尺度,结合Relief F算法和CFS算法分别对先验特征数据集进行优选,最后利用随机森林算法(Random Forest, RF)完成分类。以湖南山地丘陵地区为研究区,在同质性与Moran’s I联合评价的最优分割尺度160基础上,采用优选的特征子集,构造出3种面向对象分类方案。结果表明,经过最优尺度计算、CFS特征优选和机器学习方法的分类结果精度最高,总体精度达到90.3%,Kappa系数达到0.873。证明了该方法适用于山地丘陵地区土地覆盖分类。
In view of the problems that the classification scale of UAV images in mountainous and hilly areas is difficult to determine, the feature quantity dimension is too high, and the classification accuracy is low. The research first determines the optimal segmentation scale, and combines the Relief F algo-rithm and the CFS algorithm to optimize the prior feature data set respectively, and finally uses the Random Forest (RF) algorithm to complete the classification. Taking the mountainous and hilly area of Hunan as the study area, based on the optimal segmentation scale 160 jointly evaluated by ho-mogeneity and Moran’s I, three object-oriented classification schemes were constructed using the optimal feature subset. The results show that the classification results obtained by optimal scale calculation, CFS feature optimization and machine learning method have the highest accuracy, with an overall accuracy of 90.3% and a Kappa coefficient of 0.873. It is proved that the method is suita-ble for land cover classification in mountainous and hilly areas.

References

[1]  张卫春, 刘洪斌, 武伟. 基于随机森林和Sentinel-2影像数据的低山丘陵区土地利用分类——以重庆市江津区李市镇为例[J]. 长江流域资源与环境, 2019, 28(6): 1334-1343.
[2]  Yin, L., You, N., Zhang, G., Huang, J. and Dong, J. (2020) Optimizing Feature Selection of Individual Crop Types for Improved Crop Mapping. Remote Sensing, 12, Arti-cle No. 162.
https://doi.org/10.3390/rs12010162
[3]  Rodriguez-galiano, V.F., Ghimire, B., Rogan, J., Chi-ca-Olmo, M. and Rigol-Sanchez, J.P. (2012) An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS Journal of Photogrammetry & Remote Sensing, 67, 93-104.
https://doi.org/10.1016/j.isprsjprs.2011.11.002
[4]  Cracknell, M.J. and Reading, A.M. (2014) Geological Map-ping Using Remote Sensing Data: a Comparison of Five Machine Learning Algorithms, Their Response to Variations in the Spatial Distribution of Training Data and the Use of Explicit Spatial Information. Computers & Geosciences, 63, 22-33.
https://doi.org/10.1016/j.cageo.2013.10.008
[5]  刘春亭, 冯权泷, 金鼎坚, 史同广, 刘建涛, 朱明水. 随机森林协同Sentinel-1/2的东营市不透水层信息提取[J]. 自然资源遥感, 2021, 33(3): 253-261.
[6]  姚杰鹏, 杨磊库, 陈探, 宋春桥. 基于Sentinel-1,2和Landsat 8时序影像的鄱阳湖湿地连续变化监测研究[J]. 遥感技术与应用, 2021, 36(4): 760-776.
[7]  Otukei, J.R. and Blaschke, T. (2010) Land Cover Change Assessment Using Decision Trees, Support Vector Machines and Maximum Likelihood Classification Algorithms. International Journal of Applied Earth Observation and Geoinformation, 12, S27-S31.
https://doi.org/10.1016/j.jag.2009.11.002
[8]  Shao, Y. and Lunetta, R.S. (2012) Comparison of Support Vector Machine, Neural Network, and Cart Algorithms for the Land-cover Classification Using Limited Training Data Points. ISPRS Journal of Photogrammetry & Remote Sensing, 70, 78-87.
https://doi.org/10.1016/j.isprsjprs.2012.04.001
[9]  Dihkan, M., Guneroglu, N., Karsli, F. and Guneroglu, A. (2013) Remote Sensing of Tea Plantations Using an Svm Classifier and Pattern-based Accuracy Assessment Technique. International Journal of Remote Sensing, 34, 8549-8565.
https://doi.org/10.1080/01431161.2013.845317
[10]  陈彦四, 黄春林, 侯金亮, 韩伟孝, 冯娅娅, 李翔华, 等. 基于多时相Sentinel-2影像的黑河中游玉米种植面积提取研究[J]. 遥感技术与应用, 2021, 36(2): 324-331.
[11]  刘曙光, 董行, 娄厦, Dorzhievna, R.L., Nikitina, E. 基于随机森林特征变量优化的湿地植物分类与密度反演[J]. 同济大学学报(自然科学版), 2021, 49(5): 695-704.
[12]  何云, 黄翀, 李贺, 刘庆生, 刘高焕, 周振超, 等. 基于Sentinel-2A影像特征优选的随机森林土地覆盖分类[J]. 资源科学, 2019, 41(5): 992-1001.
https://doi.org/10.18402/resci.2019.05.15
[13]  Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
[14]  Kira, K. (1992) The Feature Selection Problem: Traditional Methods and a New Algo-rithm. The 10th National Conference on Artificial Intelligence, San Jose, 12-16 July 1992, 129-134.
[15]  张东彦, 杨玉莹, 黄林生, 杨琦, 梁栋, 佘宝, 等. 结合Sentinel-2影像和特征优选模型提取大豆种植区[J]. 农业工程学报, 2021, 37(9): 110-119.
[16]  肖艳, 王斌. 基于面向对象的极化雷达影像分类[J]. 红外与毫米波学报, 2020, 39(4): 505-512.
[17]  Hay, G.J., Blaschke, T., Marceau, D.J. and Bouchard, A. (2003) A Comparison of Three Image-object Methods for the Multiscale Analysis of Landscape Structure. ISPRS Journal of Photogrammetry and Remote Sensing, 57, 327-345.
https://doi.org/10.1016/S0924-2716(02)00162-4
[18]  刘兆祎, 李鑫慧, 沈润平, 朱枫, 张凯, 王恬, 等. 高分辨率遥感图像分割的最优尺度选择[J]. 计算机工程与应用, 2014, 50(6): 144-147.
[19]  王宏胜, 李永树, 吴玺, 等. 结合空间分析的面向对象无人机影像土地利用分类[J]. 测绘工程, 2018, 27(2): 57-61.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133