|
碳交易机制下计及需求响应的动态环境经济优化调度
|
Abstract:
在低碳背景下,动态环境经济调度作为实现“双碳”目标的有效途径,需要在满足电力供应的基本需求的基础上,保证经济效益、环境利益与低碳化。本文提出了一种阶梯型碳交易机制下计及价格型需求响应的动态环境经济优化调度模型,并采用改进的算术优化算法对优化模型进行求解。经验证,改进的算术优化算法相较于其他经典算法具有显著寻优性能,重新构建的优化调度可以促进智能电网的优化运行,有效降低运行成本、碳交易成本及环境污染。
In the context of low carbon, as an effective way to achieve the goal of “carbon peaking and carbon neutrality”, dynamic environmental economic dispatch needs to ensure economic benefits, envi-ronmental benefits and low carbon on the basis of meeting the basic needs of power supply. This paper proposes a dynamic environmental economic optimal scheduling model considering price- based demand response under the stepped carbon trading mechanism, and uses the improved arithmetic optimization algorithm to solve the optimization model. It is proved that the improved algorithm has remarkable optimization performance compared with other classical algorithms. The optimal scheduling in this paper can promote the optimal operation of smart grid, effectively re-duce the operation cost, carbon transaction cost and environmental pollution.
[1] | 项目综合报告编写组. 《中国长期低碳发展战略与转型路径研究》综合报告[J]. 中国人口?资源与环境, 2020, 30(11): 1-25. |
[2] | IPCC (2018) Special Report on Global Warming of 1.5?C. Cambridge University Press, Cam-bridge. |
[3] | 康重庆, 杜尔顺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46(3): 821-833. |
[4] | 胡志坚, 刘如, 陈志. 中国“碳中和”承诺下技术生态化发展战略思考[J]. 中国科技论坛, 2021(5): 14-20. |
[5] | 安军, 陈启鑫, 等. 面向大气污染防治的电力绿色调度策略研究与实践[J]. 电网技术, 2021, 45(2): 605-612.
https://doi.org/10.13335/j.1000-3673.pst.2020.0651 |
[6] | Ramanathan, R. (1994) Emission Constrained Economic Dispatch. IEEE Transactions on Power Systems, 9, 1994-2000.
https://doi.org/10.1109/59.331461 |
[7] | Talaq, J.H., El-Hawary, F. and El-Hawary, M.E. (1994) A Summary of Environmental/Economic Dispatch Algorithms. IEEE Transactions on Power Systems, 9, 1508-1516. https://doi.org/10.1109/59.336110 |
[8] | Geng, Z., Conejo, A.J., Chen, Q., et al. (2017) Electricity Production Scheduling under Uncertainty: Max Social Welfare vs. Min Emission vs. Max Renewable Production. Applied Energy, 193, 540-549.
https://doi.org/10.1016/j.apenergy.2017.02.051 |
[9] | Sadeghian, H.R. and Ardehali, M.M. (2016) A Novel Ap-proach for Optimal Economic Dispatch Scheduling of Integrated Combined Heat and Power Systems for Maximum Economic Profit and Minimum Environmental Emissions Based on Benders Decomposition. Energy, 102, 10-23. https://doi.org/10.1016/j.energy.2016.02.044 |
[10] | 于德鳌, 李慧, 等. 基于改进萤火虫算法的含风电系统环境经济调度[J]. 电力科学与技术学报, 2020, 35(2): 84-92. https://doi.org/10.19781/j.issn.1673-9140.2020.02.011 |
[11] | 夏爱明. 基于MOMPA-DE算法的含风电系统环境经济调度研究[D]: [硕士学位论文]. 镇江: 江苏科技大学, 2021. https://doi.org/10.27171/d.cnki.ghdcc.2021.000044 |
[12] | Jebaraj, L., Venkatesan, C., Soubache, I., et al. (2017) Application of Differential Evolution Algorithm in Static and Dynamic Economic or Emission Dispatch Problem: A Re-view. Renewable and Sustainable Energy Reviews, 77, 1206-1220. https://doi.org/10.1016/j.rser.2017.03.097 |
[13] | 朱永胜. 电力系统环境经济优化调度研究[D]: [博士学位论文]. 郑州: 郑州大学, 2016. |
[14] | 张磊, 向紫藤, 等. 基于绿色证书交易机制的含风电场电力系统动态环境经济调度[J]. 智慧电力, 2021, 49(10): 75-82. |
[15] | 李笑竹, 王维庆, 徐其丹. 基于双群体伪并行GA-DE多目标算法的动态环境经济调度[J]. 安徽大学学报(自然科学版), 2021, 45(3): 42-49. |
[16] | Elattar, E.E. (2018) Modified Harmony Search Algorithm for Combined Economic Emission Dispatch of Microgrid Incorporating Renewable Sources. Energy, 159, 496-507. https://doi.org/10.1016/j.energy.2018.06.137 |
[17] | 刘刚, 朱永利, 蒋伟. 基于混合DE-PSO多目标算法的动态环境经济调度[J]. 电力自动化设备, 2018, 38(8): 1-7. |
[18] | 武慧虹, 林妤, 等. 自适应差分进化算法及对动态环境经济调度问题应用[J]. 计算机应用研究, 2021, 38(5): 1443-1448+1454. https://doi.org/10.19734/j.issn.1001-3695.2020.05.0120 |
[19] | 夏西强, 路梦圆, 徐春秋. 授权制造下碳交易对制造/再制造影响及协调机制研究[J]. 运筹与管理, 2022, 31(5): 136-142. |
[20] | 杨威, 龚学良, 等. 碳排放交易市场机制对电力市场的影响: 基于碳价需求响应的电力市场用户行为分析[J/OL]. 南方电网技术, 1-9. http://kns.cnki.net/kcms/detail/44.1643.TK.20220519.1501.006.html, 2022-06-01. |
[21] | 张晓辉, 闫柯柯, 卢志刚, 等. 基于碳交易的含风电系统低碳经济调度[J]. 电网技术, 2013, 37(10): 2697-2704. |
[22] | 张刚, 张峰, 张利, 等. 考虑碳排放交易的日前调度双阶段鲁棒优化模型[J]. 中国电机工程学报, 2018, 38(18): 5490-5499. |
[23] | 贺鹏, 艾欣. 基于高级量测体系的用户主动需求响应特点分析[J]. 电气时代, 2013(8): 24-26. |
[24] | 杨会艳. 基于自适应人工蜂群算法的环境经济调度研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2019. |
[25] | 瞿博阳, 梁静. 双局部粒子群算法解决环境经济调度问题[J]. 计算机工程与应用, 2014, 50(11): 1-6. |
[26] | Guo, C.X., Zhan, J.P. and Wu, Q.H. (2012) Dynamic Economic Emission Dispatch Based on Group Search Optimizer with Multiple Producers. Electric Power Systems Research, 86, 8-16. https://doi.org/10.1016/j.epsr.2011.11.015 |
[27] | Wang, L. and Singh, C. (2008) Balancing Risk and Cost in Fuzzy Economic Dispatch Including wind Power Penetration Based on Particle Swarm Op-timization. Electric Power Systems Research, 78, 1361-1368.
https://doi.org/10.1016/j.epsr.2007.12.005 |
[28] | Pandit, N., Tripathi, A., Tapaswi, S., et al. (2011) Static/Dynamic Environmental Economic Dispatch Employing Chaotic Micro Bacterial Foraging Algorithm. 2nd International Confer-ence, SEMCCO 2011, Visakhapatnam, 19-21 December 2011, 585-592. https://doi.org/10.1007/978-3-642-27172-4_69 |
[29] | 张洪杰. 改进差分进化算法在电力系统经济调度中的应用研究[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2020.
https://doi.org/10.27440/d.cnki.gysdu.2020.001178 |
[30] | 肖俊明, 周谦, 等. 多目标进化算法及其在电力环境经济调度中的应用综述[J]. 郑州大学学报(工学版), 2016, 37(2): 1-9. |
[31] | Abualigah, L., Diabat, A., Mirjalili, S., Abd, E.M. and Gandomi, A.H. (2021) The Arithmetic Optimization Algorithm. Computer Methods in Applied Mechan-ics and Engineering, 376, Article ID: 113609.
https://doi.org/10.1016/j.cma.2020.113609 |
[32] | Manoharan, P., et al. (2021) A New Arithmetic Optimization Al-gorithm for Solving Real-World Multiobjective CEC-2021 Constrained Optimization Problems: Diversity Analysis and Validations. Journals & Magazines, 9, 84263- 84295. https://doi.org/10.1109/ACCESS.2021.3085529 |
[33] | Bansal, P., Gehlot, K., Singhal, A. and Gupta, A. (2021) Automatic Detection of Osteosarcoma Based on Integrated Features and Feature Selection Using Binary Arithmetic Optimization Algorithm. Multimedia Tools and Applications, 81, 8807-8834. https://doi.org/10.21203/rs.3.rs-525421/v1 |
[34] | Khatir, S., Tiachacht, S., Le Thanh, C., Ghandourah, E., Mirjalili, S. and Wahab, M.A. (2021) An Improved Artificial Neural Network Using Arithmetic Optimization Algorithm for Damage Assessment in FGM Composite Plates. Composite Structures, 273, Article ID: 114287. https://doi.org/10.1016/j.compstruct.2021.114287 |
[35] | Lacal-Arantegui, R. (2015) Materials Use in Electricity Generators in Wind Turbines State-of-the-Art and Future Specifications. Journal of Cleaner Production, 87, 275-283. https://doi.org/10.1016/j.jclepro.2014.09.047 |
[36] | 王子龙, 于东立, 门向阳, 等. 含压缩空气储能的能源互联微网型系统优化配置[J]. 电力需求侧管理, 2018, 20(6): 40-45. |
[37] | 甘阳. 考虑需求响应的独立微电网多目标优化配置研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2018. |
[38] | 李国庆, 翟晓娟, 李扬, 等. 基于改进蚁群算法的微电网多目标模糊优化运行[J]. 太阳能学报, 2018, 39(8): 2310-2317. |
[39] | 赵国涛, 丁泉, 付军华, 等. 基于多市场联动的区域能源系统低碳路径研究[J]. 电力建设, 2021, 42(3): 19-26. |
[40] | 郑婷婷, 刘升, 等. 自适应t分布与动态边界策略改进的算术优化算法[J]. 计算机应用研究, 2022, 39(5): 1410-1414. https://doi.org/10.19734/j.issn.1001-3695.2021.09.0428 |
[41] | Lu, X., Zhou, K. and Yang, S. (2017) Mul-ti-Objective Optimal Dispatch of Micro-Grid Containing Electric Vehicles. Journal of Cleaner Production, 165, 1572-1581. https://doi.org/10.1016/j.jclepro.2017.07.221 |
[42] | Amjad, A.M., Alireza, S., et al. (2011) Mul-ti-Objective Operation Management of a Renewable MG (Micro-Grid) with Back-Up Micro-Turbine/Fuel Cell/Battery Hybrid Power Source. Energy, 36, 6490-6507.
https://doi.org/10.1016/j.energy.2011.09.017 |