|
凸约束优化问题的杂交三阶投影HS-PRP方法
|
Abstract:
本文提出了一种杂交三阶投影HS-PRP共轭梯度法求解凸约束优化问题并证明了该算法的全局收敛性,该方法是求解无约束优化问题的三阶HS共轭梯度法的推广。数值实验结果表明,该算法是有效的。
In this paper, we propose a hybrid third-term projected HS-PRP conjugate gradient method for solving convex constrained optimization problems and establish its global convergence, which is a generalization of the third-term HS conjugate gradient method for unconstrained optimization. Numerical experimental results show that the algorithm is effective.
[1] | Fletcher. R. and Reeves, C.M. (1964) Function Minimization by Conjugate Gradients. The Computer Journal, 7, 149-154. https://doi.org/10.1093/comjnl/7.2.149 |
[2] | Polyak, B.T. (1969) The Conjugate Gradient Method in Ex-treme problems. USSR Computational Mathematics and Mathematical Physics, 9, 94-112. https://doi.org/10.1016/0041-5553(69)90035-4 |
[3] | Hestenes, M.R. and Stiefel, E. (1952) Method of Conjugate Gradient for Solving Linear System. Journal of Research of the National Bureau of Standards, 49, 409-436. https://doi.org/10.6028/jres.049.044 |
[4] | Dai, Y.H. and Yuan, Y. (1999) A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property. SIAM Journal on Optimization, 10, 177-182. https://doi.org/10.1137/S1052623497318992 |
[5] | Fletcher, R. (1987) Practical Methods of Optimization, Vol. 1: Unconstrained Optimization. Wiley & Sons, New York. |
[6] | Liu, Y. and Storey, C. (1991) Efficient Generalized Con-jugate Gradient Algorithms, Part 1: Theory. Journal of Optimization Theory and Applications, 69, 129-137. https://doi.org/10.1007/BF00940464 |
[7] | Zhou, W. and Li, D. (2014) On the Convergence Properties of the Un-modified PRP Method with a Non-Descent Line Search. Optimization Methods Software, 29, 484-496. https://doi.org/10.1080/10556788.2013.811241 |
[8] | Hager, W.W. and Zhang, H. (2005) A New Conjugate Gra-dient Method with Guaranteed Descent and an Efficient Line Search. SIAM Journal on Optimization, 16, 170-192. https://doi.org/10.1137/030601880 |
[9] | Gilbert, J.C. (1994) Convergence Properties of Conjugate Descent Method for Optimization. SIAM Journal on Optimization, 2, 24-32. |
[10] | 杨萌, 王祥玲. 修正HS共轭梯度法的全局收敛性[J]. 桂林电子科技大学学报, 2009, 29(4): 300-302. |
[11] | Zhang, L., Zhou, W. and Li, D. (2006) A Descent Modified Polak-Ribière-Polyak Conjugate Gradient Method and Its Global Convergence. IMA J Numerical Analysis, 26, 629-640. https://doi.org/10.1093/imanum/drl016 |
[12] | Zhang, L., Zhou, W. and Li, D. (2006) Global Convergence of a Modi-fied Fletcher Reeves Conjugate Gradient Method with Armijo-Type Line Search. Numerische Mathematik, 104, 561-572. https://doi.org/10.1007/s00211-006-0028-z |
[13] | Li, D.H. and Fukushima, M. (2001) A Modified BFGS Method and Its Global Convergence in Nonconvex Minimization. Journal of Computational and Applied Mathematics, 129, 15-35. https://doi.org/10.1016/S0377-0427(00)00540-9 |
[14] | Zhang, L., Zhou, W. and Li, D. (2007) Some Descent Three-Term Conjugate Gradient Methods and Their Global Convergence. Optimization Methods and Software, 22, 697-711. https://doi.org/10.1080/10556780701223293 |
[15] | Touati-Ahmed, D. and Story, C. (1990) Global Con-vergent Hybrid Conjugate Gradient Method. Journal of Optimization Theory and Applications, 64, 379-397. https://doi.org/10.1007/BF00939455 |
[16] | Dai, Y.H. and Yuan, Y. (2001) An Efficient Hybrid Conjugate Method for Unconstrained Optimization. Annals of Operations Research, 103, 33-47. https://doi.org/10.1023/A:1012930416777 |
[17] | Dai, Z.F. and Wen, F.H. (2015) Comments on Another Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization by Andrei. Numerical Algorithms, 69, 337-341. https://doi.org/10.1007/s11075-014-9899-8 |
[18] | Zhou, W. (2021) A Projected PRP Method for Optimization with Convex Constraint. Pacilici Journal of Optimization, 17, 47-55. |
[19] | Zhou W. (2013) A Short Note on the Global Con-vergence of the Unmodified PRP Method. Optimization Letters, 7, 1367-1372. https://doi.org/10.1007/s11590-012-0511-7 |
[20] | Calamai, P.H. and Moré, J.J. (1987) Projected Gradient Methods for Linearly Constrained Problems. Mathematical Programming, 39, 93-116. https://doi.org/10.1007/BF02592073 |