全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中药材苍术综合开发利用的研究进展
The Research Progress of Traditional Chinese Medicine Atractylodes lancea Comprehensive Exploitation and Utilization

DOI: 10.12677/HJAS.2022.128104, PP. 731-736

Keywords: 苍术,内生菌,活性成分,药理作用
Atractylodes
, Endophytes, Active Ingredients, Pharmacological Effects

Full-Text   Cite this paper   Add to My Lib

Abstract:

苍术Atractylodes lancea (Thunb.) DC.是菊科苍术属多年生草本植物,其疙瘩状根状茎是我国传统的中药材。《中国药典》(2020年版)记载苍术为茅苍术Atractylodes lancea (Thunb.) DC.或北苍术Atractylodes lancea (DC.) Koidz的干燥根茎,有燥湿、化浊、止痛之效。本文对中药材苍术的种质资源、内生菌、药效成分、药理作用以及挥发油合成进行概述,为合理开发利用苍术资源提供参考。
Atractylodes lancea (Thunb.) DC. is a perennial herbaceous plant of the family of Compositae, and its knobbly rhizoid is a traditional Chinese medicinal material. In the Chinese Pharmacopoeia (2020 edition), the atractylodes is the dry rhizome of Atractylodes lancea (Thunb.) DC. or Atractylodes chinensis (DC.), and it has dryness, turbidification, and analgesic effects. In this paper, germplasm resources, endophytic bacteria, pharmacodynamic components, pharmacological effects and volatile oil synthesis of Atractylodes lancea were summarized, so as to provide a reference for rational development and utilization of the Atractylodes lancea resources.

References

[1]  赵佳琛, 翁倩倩, 张悦, 等. 经典名方中术类药材的本草考证[J]. 中国中药杂志, 2019, 44(23): 5248-5255.
[2]  国家药典委员会. 中华人民共和国药典(一部) [M]. 北京: 中国医药科技出版社, 2020.
[3]  Koonrungsesomboon, N., Na-Bangchang, K. and Karbwang, J. (2014) Therapeutic Potential and Pharmacological Activities of Atractylodes lancea (Thunb.) DC. Asian Pacific Journal of Tropical Medicine, 7, 421-428.
https://doi.org/10.1016/S1995-7645(14)60069-9
[4]  Ishii, T., Okuyama, T., Noguchi, N., et al. (2020) Anti-inflammatory Constituents of Atractylodes chinensis Rhizome Improve Glomerular Lesions in Immunoglobulin A Nephropathy Model Mice. Journal of Natural Medicines, 74, 51-64.
https://doi.org/10.1007/s11418-019-01342-3
[5]  高鑫媛, 白茹玥, 魏金月, 等. 中药材苍术种质资源及栽培技术研究进展[J]. 承德医学院学报, 2022, 39(3): 237-241.
[6]  邓娟. 基于转录组学的茅苍术种质资源研究[D]: [硕士学位论文]. 武汉: 湖北中医药大学, 2018.
[7]  Zietkiewicz, E., Rafalski, A. and Labuda, D. (1994) Genome Fingerprinting by Simple Sequence Repeat (SSR)-Anchored Polymerase Chain Reaction Amplification. Genomics, 20, 176-183.
https://doi.org/10.1006/geno.1994.1151
[8]  姜雨昕, 肖春萍, 孙金, 等. 基于ISSR标记的北苍术种质资源亲缘关系分析[J]. 种子, 2021, 40(12): 32-38.
[9]  王娜, 尹海波, 陈吉祥. 北苍术种子质量分级标准研究[J]. 种子, 2021, 40(2): 133-138.
[10]  黄日晴, 王鑫晶, 玉猛, 等. 苍术繁殖技术研究进展[J]. 河北农业大学学报, 2022, 45(3): 75-81.
[11]  张炜坤. 北苍术离体快繁体系的建立[D]: [硕士学位论文]. 秦皇岛: 河北科技师范学院, 2018.
[12]  黄日晴, 王鑫晶, 玉猛, 等. 苍术繁殖技术研究进展[J]. 河北农业大学学报, 2022, 45(3): 75-81.
[13]  陈璐, 邢德科, 吴沿友, 等. 不同基质对茅苍术移栽组培苗叶片导水度及光合的影响[J]. 种子, 2021, 40(2): 7-12+19.
[14]  李鸿盛, 刘梦茹, 侯文秋, 等. 药用植物茅苍术快繁及组织培养技术初探[J]. 分子植物育种, 2019, 17(5): 1611-1615.
[15]  张炜坤, 赵恢, 张小芳, 等. 北苍术组织培养与快繁技术研究[J]. 种子, 2018, 37(12): 136-139.
[16]  唐梦月, 樊佳佳, 刘霞, 等. 苦蘵内生真菌Trichoderma harzianum的次级代谢产物[J]. 中国实验方剂学杂志, 2019, 25(14): 186-191.
[17]  何冬梅, 王海, 陈金龙, 等. 中药微生态与中药道地性[J]. 中国中药杂志, 2020, 45(2): 290-302.
[18]  Yuan, J., Zhang, W., Sun, K., et al. (2019) Comparative Transcriptomics and Proteomics of Atractylodes lancea in Response to Endophytic Fungus Gilmaniella sp. AL12 Reveals Regulation in Plant Metabo-lism. Frontiers in Microbiology, 10, Article No. 1208.
https://doi.org/10.3389/fmicb.2019.01208
[19]  陈飘雪, 陈飞, 袁洁, 等. 内生菌复合接种对茅苍术生长和倍半萜积累的影响[J]. 生态学杂志, 2020, 39(9): 2944-2952.
[20]  阳湖荣. 内生细菌促进白术和茅苍术挥发油积累的信号分子差异研究[D]: [硕士学位论文]. 南京: 南京师范大学, 2019.
[21]  王红阳, 康传志, 王升, 等. 基于高通量测序和传统培养分离方法的药用植物内生菌资源研究策略[J]. 中国中药杂志, 2021, 46(8): 1910-1919.
[22]  欧阳臻, 杨凌, 宿树兰, 等. 茅苍术挥发油的气相色谱-质谱指纹图谱研究[J]. 药学学报, 2007, 42(9): 968-972.
[23]  庄丹, 秦靖, 王慧阳, 等. 苍术的药效成分研究进展[J]. 生物加工过程, 2021, 19(3): 306-313.
[24]  Jun, X., Fu, P., Lei, Y., et al. (2018) Pharmacological Effects of Medicinal Components of Atractylodes lancea (Thunb.) DC. Chinese Medicine, 13, Article No. 59.
https://doi.org/10.1186/s13020-018-0216-7
[25]  蒋正立, 陈星如, 林忠, 等. HPLC法测定复方刺梨合剂中苍术素的含量[J]. 中国中医药科技, 2022, 29(1): 47-49.
[26]  Chae, H.-S., Kim, Y.-M. and Chin, Y.-W. (2016) At-ractylodin Inhibits Interleukin-6 by Blocking NPM-ALK Activation and MAPKs in HMC-1. Molecules, 21, Article No. 1169.
https://doi.org/10.3390/molecules21091169
[27]  Yu, C., Xiong, Y., Chen, D., et al. (2017) Ameliorative Ef-fects of Atractylodin on Intestinal Inflammation and Co-Occurring Dysmotility in Both Constipation and Diarrhea Prom-inent Rats. The Korean Journal of Physiology & Pharmacology, 21, 1-9.
https://doi.org/10.4196/kjpp.2017.21.1.1
[28]  Tang, F., Fan, K., Wang, K., et al. (2018) Atractylodin Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting NLRP3 Inflammasome and TLR4 Pathways. Journal of Pharmacological Sciences, 136, 203-211.
https://doi.org/10.1016/j.jphs.2017.11.010
[29]  Bailly, C. (2021) Atractylenolides, Essential Components of At-ractylodes-Based Traditional Herbal Medicines: Antioxidant, Anti-Inflammatory and Anticancer Properties. European Journal of Pharmacology, 891, Article ID: 173735.
https://doi.org/10.1016/j.ejphar.2020.173735
[30]  Ma, E.-L., Li, Y.-C., Tsuneki, H., Xiao, J.-F., Xia, M.-Y., Wang, M.-W. and Ikuko, K. (2008) Beta-Eudesmol Suppresses Tumour Growth Through Inhibition of Tumour Neo-vascularisation and Tumour Cell Proliferation. Journal of Asian Natural Products Research, 10, 159-167.
https://doi.org/10.1080/10286020701394332
[31]  Hiroshi, T., Ma, E.-L., Kobayashi, S., Sekizaki, N., Maekawa, K., Sasaoka, T., et al. (2005) Antiangiogenic Activity of Beta-Eudesmol in Vitro and in Vivo. European Journal of Pharmacology, 512, 105-115.
https://doi.org/10.1016/j.ejphar.2005.02.035
[32]  Kiso, Y., Tohkin, M. and Hikino, H. (1983) Antihepatotoxic Principles of Atractylodes Rhizomes. Journal of Natural Products, 46, 651-654.
https://doi.org/10.1021/np50029a010
[33]  Plengsuriyakarn, T., Karbwang, J. and Na-Bangchang, K. (2015) Anti-cancer Activity Using Positron Emission Tomography-Computed Tomography and Pharmacokinetics of β-Eudesmol in Human Cholangiocarcinoma Xenografted Nude Mouse Model. Clin Exp Pharmacol, 42, 293-304.
https://doi.org/10.1111/1440-1681.12354
[34]  Han, N.R., Moon, P.D., Ryu, K.J., et al. (2017) β-Eudesmol Sup-presses Allergic Reactions via Inhibiting Mast Cell Degranulation. Clinical and Experimental Pharmacology and Physi-ology, 44, 257-265.
https://doi.org/10.1111/1440-1681.12698
[35]  Tsuneki, H., Ma, E.L., Kobayashi, S., et al. (2005) Antiangiogenic Activity of Beta-Eudesmol in Vitro and in Vivo. European Journal of Pharmacology, 512, 105-115.
https://doi.org/10.1016/j.ejphar.2005.02.035
[36]  Kiso, Y., Tohkin, M. and Hikino, H. (1985) Mechanism of Anti-hepatotoxic Activity of Atractylon, I: Effect on Free Radical Generation and Lipid Peroxidation. Planta Medica, 51, 97-100.
https://doi.org/10.1055/s-2007-969416
[37]  Cheng, Y., Mai, J.Y., Hou, T.L., et al. (2016) Antiviral Activ-ities of Atractylon from Atractylodis Rhizoma. Molecular Medicine Reports, 14, 3704-3710.
https://doi.org/10.3892/mmr.2016.5713
[38]  陈天阳, 张萍, 成扬. 苍术酮含量测定方法、燥性及药理作用的研究进展[J]. 中成药, 2022, 44(6): 1902-1905.
[39]  Kim, H.Y., Nam, S.Y., Hwang, S.Y., et al. (2016) Atractylone, an Active Constituent of KMP6, Attenuates Allergic Inflammation on Allergic Rhinitis in Vitro and in Vivo Models. Molec-ular Immunology, 78, 121-132.
https://doi.org/10.1016/j.molimm.2016.09.007
[40]  Han, N.R., Moon, P.D., Nam, S.Y., et al. (2016) Inhibitory Effects of Atractylone on Mast Cell-Mediated Allergic Reactions. Chemico-Biological Interactions, 258, 59-68.
https://doi.org/10.1016/j.cbi.2016.08.015
[41]  Singhuber, J., Baburin, I., K?hlig, H., et al. (2012) GABA A Re-ceptor Modulators from Chinese Herbal Medicines Traditionally Applied against Insomnia and Anxiety. Phytomedicine, 19, 334-340.
https://doi.org/10.1016/j.phymed.2011.10.009
[42]  Xu, H., Van der Jeught, K., Zhou, Z., et al. (2021) At-ractylenolide I Enhances Responsiveness to Immune Checkpoint Blockade Therapy by Activating Tumor Antigen Presentation. Journal of Clinical Investigation, 131, Article ID: e146832.
https://doi.org/10.1172/JCI146832
[43]  Xiao, C., Xu, C., He, N., et al. (2020) Atractylenolide II Prevents Radia-tion Damage via MAPKp38/Nrf2 Signaling Pathway. Biochemical Pharmacology, 177, Article ID: 114007.
https://doi.org/10.1016/j.bcp.2020.114007
[44]  Wang, M., Hu, R., Wang, Y., et al. (2019) Atractylenolide III At-tenuates Muscle Wasting in Chronic Kidney Disease via the Oxidative Stress-Mediated PI3K/AKT/mTOR Pathway. Ox-idative Medicine and Cellular Longevity, 2019, Article ID: 1875471.
https://doi.org/10.1155/2019/1875471
[45]  Qin, J., Wang, H.Y., Zhuang, D., et al. (2019) Structural Characteriza-tion and Immunoregulatory Activity of Two Polysaccharides from the Rhizomes of Atractylodes lancea (Thunb.) DC. International Journal of Biological Macromolecules, 136, 341-351.
https://doi.org/10.1016/j.ijbiomac.2019.06.088
[46]  Xu, J., Chen, D., Liu, C., et al. (2016) Structural Characteriza-tion and Anti-Tumor Effects of an Inulin-Type Fructan from Atractylodes chinensis. International Journal of Biological Macromolecules, 82, 765-771.
https://doi.org/10.1016/j.ijbiomac.2015.10.082
[47]  Kitajima, J., Kamoshita, A., Ishikawa, T., et al. (2003) Glyco-sides of Atractylodes lancea. Journal of Clinical Investigation, 51, 673-678.
https://doi.org/10.1248/cpb.51.673
[48]  Nakai, Y., Kido, T., Hashimoto, K., et al. (2003) Effect of the Rhizomes of Atractylodes lancea and Its Constituents on the Delay of Gastric Emptying. Journal of Ethnopharmacology, 84, 51-55.
https://doi.org/10.1016/S0378-8741(02)00260-X
[49]  Masuda, Y., Kadokura, T., Ishii, M., et al. (2015) Hinesol, a Compound Isolated from the Essential Oils of Atractylodes lancea rhizome, Inhibits Cell Growth and Induces Apoptosis in Human Leukemia HL-60 Cells. Journal of Natural Medicines, 69, 332-339.
https://doi.org/10.1007/s11418-015-0897-5
[50]  Satoh, K., Nagai, F. and Kano, I. (2000) Inhibition of H+, K+-ATPase by Hinesol, a Major Component of So-jutsu, by Interaction with Enzyme in the E1 State. Biochemical Pharmacology, 59, 881-886.
https://doi.org/10.1016/S0006-2952(99)00399-8
[51]  Guo, W., Liu, S., Ju, X., et al. (2019) The Antitumor Effect of Hinesol, Extract from Atractylodes lancea (Thunb.) DC. by Proliferation, Inhibition, and Apoptosis Induction via MEK/ERK and NF-κB Pathway in Non-Small Cell Lung Cancer Cell Lines A549 and NCI-H1299. Journal of Cellular Biochemistry, 120, 18600-18607.
https://doi.org/10.1002/jcb.28696

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133