|
Python在概率论与数理统计教学中的应用——以区间估计与假设检验为例
|
Abstract:
Python是一种广泛使用的解释型、高级和通用的编程语言。Python作为最受欢迎的语言之一,在中学和大学教学中被广泛应用。概率论与数理统计是大学数学的必修课程,其中有许多重要的实践内容。但在大部分教材中,解决相关实际问题大多使用R、Matlab或者SPSS软件进行教学。实际上,利用Python能方便的实现概率论与数理统计中的相关计算,能有效的加深学生对理论知识的理解,提高学生的综合运用能力。本文以区间估计和假设检验两个重要知识点为例,对如何在概率论与数理统计教学过程中引入Python工具,使用怎样的正确代码来解决实际问题。python在概率论与数理统计教学中应用能够提高学生的学习兴趣并进行更深入的研究,对相关课程的教学提供更有效的方法,在学生学习专业相关知识的同时提高编程能力,具有一定的实用意义。
Python is a widely used interpreted, high-level, and general-purpose programming language. As one of the most popular languages, Python is widely used in secondary school and university teaching. Probability theory and mathematical statistics are compulsory courses in university mathematics, and there are many important practical contents in them. However, in most textbooks, most of the practical problems are solved using R, Matlab or SPSS software. In fact, the use of Python can easily realize the relevant calculations in probability theory and mathematical statistics, which can effectively deepen students’ understanding of theoretical knowledge and improve students’ comprehensive application ability. Taking the two important knowledge points of interval estimation and hypothesis testing as examples, this paper explains how to introduce Python tools in the teaching process of probability theory and mathematical statistics, and what kind of correct code to use to solve practical problems. The application of python in the teaching of probability theory and mathematical statistics can improve students’ learning interest and conduct more indepth research, provide more effective methods for the teaching of related courses, and improve programming ability while students learn professional knowledge, which has certain practical significance.
[1] | 朱海. 探究区间估计与假设检验的关系[J]. 四川职业技术学院学报, 2021, 31(4): 163-168.
https://doi.org/10.13974/j.cnki.51-1645/z.2021.04.026 |
[2] | 崔玉杰, 刘喜波. R和Python软件在《概率论与数理统计》教学中应用初探[J]. 教育教学论坛, 2017(12): 192-193. |
[3] | 骆剑平, 郑能恒, 邹文斌, 何志权. Matlab与Python程序设计课程教学探索[J]. 高教学刊, 2022, 8(18): 135-137+141.
https://doi.org/10.19980/j.CN23-1593/G4.2022.18.034 |
[4] | 叶小青. Python在《概率论与数理统计》教学中的应用[J]. 中外企业家, 2020(8): 226-227. |
[5] | 张勇. 关于假设检验实际使用中若干问题的探讨[J]. 质量与市场, 2021(16): 169-171. |
[6] | 吴喜之. 统计学: 从数据到结论(第四版) [M]. 北京: 中国统计出版社, 2013. |
[7] | 郝静, 平梦婷, 陈建文, 王仲梅. 基于Python语言的科学计算课程教学改革研究[J]. 计算机时代, 2022(1): 90-92+96. |
[8] | 丁毅涛, 任水利. 基于Python语言的数理统计课程应用改革探索——以应用统计学专业为例[J]. 科技风, 2021(28): 25-27. https://doi.org/10.19392/j.cnki.1671-7341.202128009 |