The high-precision measurements of the Hubble parameter make the theory of cosmic expansion more and more confusing, which bolsters the idea that new physics may be needed to explain the mismatch. Astronomical observations show that the Universe is expanding exponentially. Free electron Compton scattering (FEC) can produce the illusion of exponentially expanding Universe: FEC causes photons to redshift exponentially, and the photon beam exponentially expands along the propagation direction. Is this a coincidence? The redshift factor of the FEC is z = (1+z); the beam length stretch factor (time dilation of the supernova curve) of the FEC is z = (1+z); the expansion factor of the beam volume of the FEC is z = (1+z)3, and the FEC effect does not blur the image of distant galaxies. The reason for rejecting the “tired light” does not hold in FEC.
References
[1]
Goldhaber, G., Groom, D.E., Kim, A., Aldering, G., Astier, P., Conley, A., et al. (2001) Timescale Stretch Parameterization of Type Ia Supernovab-Band Light Curves. The Astrophysical Journal, 558, 359-368. https://doi.org/10.1086/322460
[2]
Blondin, S., Davis, T.M., Krisciunas, K., Schmidt, B.P., Sollerman, J., Wood-Vasey, W.M., et al. (2008) Time Dilation in Type Ia Supernova Spectra at High Redshift. The Astrophysical Journal, 682, 724-736. https://doi.org/10.1086/589568
[3]
Wright, E.L. (2008) Errors in Tired Light Cosmology. http://www.astro.ucla.edu/~wright/tiredlit.htm
[4]
Sandage, A. and Lubin, L.M. (2001) The Tolman Surface Brightness Test for the Reality of the Expansion.I. Calibration of the Necessary Local Parameters. The Astronomical Journal, 121, 2271-2288 https://doi.org/10.1086/320394
[5]
Riess, A.G., Casertano, S., Yuan, W., Macri, L.M. and Scolnic, D. (2019) Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond λCDM. The Astrophysical Journal, 876, Article No. 85. https://doi.org/10.3847/1538-4357/ab1422
[6]
Garner, R. (2019) Mystery of the Universe’s Expansion Rate Widens with New Hubble Data Nasa’s Goddard Space Flight Center. https://www.nasa.gov/feature/goddard/2019/mystery-of-the-universe-s-expansion-rate-widens-with-new-hubble-data
[7]
Castelvecch, D. (2019) How Fast Is the Universe Expanding? Cosmologists Just Got More Confused. Nature, 571, 458-459. https://doi.org/10.1038/d41586-019-02198-z https://www.nature.com/articles/d41586-019-02198-z
[8]
Freedman, W.L., Madore, B.F., Hatt, D., Hoyt, T.J., Jang, I.S., Beaton, R.L., et al. (2019) The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch. The Astrophysical Journal, 882, Article No. 34. https://doi.org/10.3847/1538-4357/ab2f73
[9]
Marra, V., Amendola, L., Sawicki, I. and Valkenburg, W. (2013) Cosmic Variance and the Measurement of the Local Hubble Parameter. Physical Review Letters, 110, Article ID: 241305. https://doi.org/10.1103/PhysRevLett.110.241305
[10]
Chen, G.C.F., Fassnacht, C.D., Suyu, S.H., Rusu, C.E., Chan, J.H.H., Wong, K.C., et al. (2019) A Sharp View of H0LiCOW: H0 from Three Time-Delay Gravitational Lens Systems with Adaptive Optics Imaging. Monthly Notices of the Royal Astronomical Society, 490, 1743-1773. https://doi.org/10.1093/mnras/stz2547
[11]
Zwicky, F. (1929) On the Red Shift of Spectral Lines through Interstellar Space. Proceedings of the National Academy of Sciences of the United States of America, 15, 773-779. https://doi.org/10.1073/pnas.15.10.773
[12]
Lubin, L.M. and Sandage, A. (2001) The Tolman Surface Brightness Test for the Reality of the Expansion. Iv. A Measurement of the Tolman Signal and the Luminosity Evolution of Early-Type Galaxies. The Astronomical Journal, 122, 1084-1103. https://doi.org/10.1086/322134
[13]
Carlstrom, J.E., Holder, G.P. and Reese, E.D. (2002) Cosmology with the Sunyaev-Zel’dovich Effect. Annual Review of Astronomy and Astrophysics, 40, 643-680. https://doi.org/10.1146/annurev.astro.40.060401.093803
[14]
Malu, S., Datta, A., Colafrancesco, S., Marchegiani, P., Subrahmanyan, R., Narasimha, D., et al. (2017) Relativistic Inverse Compton Scattering of Photons from the Early Universe. Scientific Reports, 7, Article No. 16918. https://doi.org/10.1038/s41598-017-17104-8
[15]
Brown, L.S. and Kibble, T.W. B. (1964) Interaction of Intense Laser Beams with Electrons. Physical Review, 133, A705-A719. https://doi.org/10.1103/PhysRev.133.A705
[16]
Moore, C.I. (1995) Observation of the Transition from Thomson to Compton Scattering in Optical Multiphoton Interactions with Electrons. Physical Review Letters, 74, 2439-2442. https://doi.org/10.1103/PhysRevLett.74.2439
[17]
Babzien, M., Ben-Zvi, I., Kusche, K., Pavlishin, I.V., Pogorelsky, I.V., Siddons, D.P., et al. (2006) Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons. Physical Review Letters, 96, Article ID: 054802. https://doi.org/10.1103/PhysRevLett.96.054802
[18]
Lotstedt, E. and Jentschura, U.D. (2009) Nonperturbative Treatment of Double Compton Backscattering in Intense Laser Fields. Physical Review Letters, 103, 110404. https://doi.org/10.1103/PhysRevLett.103.110404
[19]
Zhang, B., Zhang, Z., Deng, Z.G., Teng, J., He, S.-K., Hong, W., et al. (2019) Quantum Mechanisms of Electron and Positron Acceleration through Nonlinear Compton Scatterings and Nonlinear Breit-Wheeler Processes in Coherent Photon Dominated Regime. Scientific Reports, 9, Article No. 18876. https://doi.org/10.1038/s41598-019-55472-5
[20]
Tei, A., Sakaue, T., Okamoto, T.J., Kawate, T., Heinzel, P., UeNo, S., et al. (2018) Blue-Wing Enhancement of the Chromospheric Mg II H and K Lines in a Solar Flare, Publications of the Astronomical Society of Japan, 70, 100. https://doi.org/10.1093/pasj/psy047
[21]
Kerr, G.S., Simões, P.J.A., Qiu, J. and Fletcher, L. (2015) Iris Observations of the Mg Ii H and K Lines during a Solar Flare. Astronomy & Astrophysics, 582, Article No. A50. https://doi.org/10.1051/0004-6361/201526128
[22]
Jing, J., Xu, Y., Cao, W., Liu, C., Gary, D. and W, Haimin (2016) Unprecedented Fine Structure of a Solar Flare Revealed by the, 1.6 M New Solar Telescope. Scientific Reports, 6, Article No. 24319. https://doi.org/10.1038/srep24319
[23]
Lemaire, P., Vial, J.C., Curdt, W., Schühle, U. and Wilhelm, K. (2015) Hydrogen Ly-α and Ly-β Full Sun Line Profiles Observed with Sumer/Soho (1996-2009). Astronomy & Astrophysics, 581, Article No. A26. https://doi.org/10.1051/0004-6361/201526059
[24]
Brown, S.A., Fletcher, L. and Labrosse, N. (2016) Doppler Speeds of the Hydrogen Lyman Lines in Solar Flares from Eve. Astronomy & Astrophysics, 596, Article No. A51. https://doi.org/10.1051/0004-6361/201628390
[25]
Joyce, S.R. G., Barstow, M.A., Holberg, J.B., Bond, H.E., Casewell, S.L., Burleigh, M.R., et al. (2018) The Gravitational Redshift of Sirius B. Monthly Notices of the Royal Astronomical Society, 481, 2361-2370. https://doi.org/10.1093/mnras/sty2404
[26]
Halenka, J., Olchawa, W., Madej, J. and Grabowski, B. (2015) Pressure Shift and Gravitational Redshift of Balmer Lines in White Dwarfs: Rediscussion. The Astrophysical Journal, 808, Article No. 131. https://doi.org/10.1088/0004-637X/808/2/131
[27]
Kerr, G.S., Carlsson, M., Allred, J.C., Young, P.R. and Daw, A.N. (2019) Si Iv Resonance Line Emission During Solar Flares: Non-Lte, Nonequilibrium, Radiation Transfer Simulations. The Astrophysical Journal, 871, Article No. 23. https://doi.org/10.3847/1538-4357/aaf46e
[28]
Reep, J.W., Bradshaw, S.J., Crump, N.A. and Warren, H.P. (2019) Efficient Calculation of Non-Local Thermodynamic Equilibrium Effects in Multithreaded Hydrodynamic Simulations of Solar Flares. The Astrophysical Journal, 871, Article No. 18. https://doi.org/10.3847/1538-4357/aaf580
[29]
Choudhury, T.R. and Srianand, R. (2002) Probing the Dark Ages with Redshift Distribution of Gamma-Ray Bursts. Monthly Notices of the Royal Astronomical Society, 336, L27-L31. https://doi.org/10.1046/j.1365-8711.2002.05984.x
[30]
Campana, S., Salvaterra, R., Tagliaferri, G., Kouveliotou, C. and Grindlay, J. (2011) Probing the Very High Redshift Universe with γ-Ray Bursts: Prospects for Observations with Future X-Ray Instruments. Monthly Notices of the Royal Astronomical Society, 410, 1611-1616. https://doi.org/10.1111/j.1365-2966.2010.17540.x
[31]
Fixsen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., Shafer, R.A. and Wright, E.L. (1996) The Cosmic Microwave Background Spectrum from the Fullcobefiras Data Set. The Astrophysical Journal, 473, 576-587. https://doi.org/10.1086/178173
[32]
Noterdaeme, P., Ledoux, C., Srianand, R., Petitjean, P. and Lopez, S. (2009) Diffuse Molecular Gas at High Redshift. Astronomy & Astrophysics, 503, 765-770. https://doi.org/10.1051/0004-6361/200912330
[33]
Noterdaeme, P., Petitjean, P., Srianand, R., Ledoux, C. and López, S. (2011) The Evolution of the Cosmic Microwave Background Temperature. Astronomy & Astrophysics, 526, Article No. L7. https://doi.org/10.1051/0004-6361/201016140
[34]
Wright, E.L. (1997) Can the CMBR Be Redshifted Starlight? No! http://www.astro.ucla.edu/~wright/stars_vs_cmb.html
[35]
Ben-Dayan, I., Durrer, R., Marozzi, G. and Schwarz, D.J. (2014) Value of H0 in the Inhomogeneous Universe. Physical Review Letters, 112, Article ID: 221301. https://doi.org/10.1103/PhysRevLett.112.221301
[36]
Katz, J.I. (2016) Inferences from the Distributions of Fast Radio Burst Pulse Widths, Dispersion Measures, and Fluencies. The Astrophysical Journal, 818, Article No. 19. https://doi.org/10.3847/0004-637X/818/1/19
[37]
Yao, J.M., Manchester, R.N. and Wang, N. (2017) A New Electron-Density Model for Estimation of Pulsar and Frb Distances. The Astrophysical Journal, 835, Article No. 29. https://doi.org/10.3847/1538-4357/835/1/29
[38]
Ashmore, L. (2016) A Relationship Between Dispersion Measure and Redshift Derived in Terms of New Tired Light. Journal of High Energy Physics, Gravitation and Cosmology, 2, 512-530. https://doi.org/10.4236/jhepgc.2016.24045
[39]
Dai, D.C., Starkman, G.D., Stojkovic, B., Stojkovic, D. and Weltman, A. (2012) Using Quasars as Standard Clocks for Measuring Cosmological Redshift. Physical Review Letters. 108, Article ID: 231302. https://doi.org/10.1103/PhysRevLett.108.231302
[40]
Chu, Y.Q. (1981) On the Relationship between Redshift and Distance. Nature magazine (China), 5-4, 364.
[41]
Williamson, I.P. (1972) Pulse Broadening Due to Multiple Scattering in the Interstellar Medium. Monthly Notices of the Royal Astronomical Society, 157, 55-71. https://doi.org/10.1093/mnras/157.1.55
[42]
Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. https://doi.org/10.1142/S0218271809015904