Introduction: A great number of software are currently used to digitalize the patient records in order to optimize the quality of services offered to patients. The objective of this study was to evaluate the effects of Electronic Health Records use in Burundi’s hospitals, taking into account the COVID-19 pandemic context. Methods: This was a quasi-experimental study based on difference in difference method. Ten district hospitals were included in the study, five of them had the Electronic Health Records and five of which did not yet have the Electronic Health Records. The hospital’s control group were chosen using the propensity score matching method. The period before the project’s implementation was 2014 and the period after were 2019 and 2020. Results: After 5 years of the Electronic Health Record’s implementation, the results showed an increase in outpatient consultation (70%), deliveries (more than 100%), caesarean sections (56%) and major surgeries (43%) indicators. The overall quality score of hospitals’ care had a regressive effect of 37% and the income from performance-based funding had an increase by 31%. The indicators which were affected by the context of the COVID-19 pandemic were especially outpatient consultation, caesarian section, income from performance-based funding decreased by 3%, 5% and 20% respectively. Conclusion: The effects of Electronic Health Records use are effective. As the COVID-19 pandemic impacted the hospital’s indicators negatively, the resilient strategies alongside the potential shocks are recommended.
References
[1]
Ologeanu-Taddei, R. and Paré, G. (2017) Technologies de l’information en santé: Un regard innovant et pragmatique. Systèmes d’Information & Management, 22, 3-8.
https://doi.org/10.3917/sim.171.0003
[2]
Bagayoko, C.O., Müller, H. and Geissbuhler, A. (2006) Assessment of Internet-Based Tele-Medicine in Africa (the RAFT Project). Computerized Medical Imaging and Graphics, 30, 407-416.
https://doi.org/10.1016/j.compmedimag.2006.09.014
[3]
Jawhari, B., Ludwick, D., Keenan, L., Zakus, D. and Hayward, R. (2016) Benefits and Challenges of EMR Implementations in Low Resource Settings: A State-of-the-Art Review. BMC Medical Informatics and Decision Making, 16, Article No. 116.
https://doi.org/10.1186/s12911-016-0354-8
[4]
Muthee, V., Bochner, A.F., Osterman, A., et al. (2018) The Impact of Routine Data Quality Assessments on Electronic Medical Record Data Quality in Kenya. PLOS ONE, 13, e0195362. https://doi.org/10.1371/journal.pone.0195362
[5]
Le Pogam, M.A., Luangsay-Catelin, C. and Notebaert, J.F. (2009) La performance hospitalière: A la recherche d’un modèle multidimensionnel cohérent. Management & Avenir, 25, 116-134. https://doi.org/10.3917/mav.025.0116
[6]
Sory, S.T., Baguiya, A., Coulibaly, A., Kouanda, S. and Sondo, B. (2017) Evaluation de la performance du système d’information hospitalier du Centre Hospitalier Universitaire Yalgado Ouédraogo de Ouagadougou, Burkina Faso. Science et technique, Sciences de la santé, 40, 135-150.
[7]
Biruk, S., Yilma, T., Andualem, M. and Tilahun, B. (2014) Health Professionals Readiness to Implement Electronic Medical Record System at three Hospitals in Ethiopia: A Cross Sectional Study. BMC Medical Informatics and Decision Making, 14, Article No. 115. https://doi.org/10.1186/s12911-014-0115-5
[8]
Kruse, C.S., Smith, B., Vanderlinden, H. and Nealand, A. (2017) Security Techniques for the Electronic Health Records. Journal of Medical Systems, 41, 127.
https://doi.org/10.1007/s10916-017-0778-4
[9]
Habonimana, D., Ouedraogo, L., Ndirahisha, E., et al. (2020) Understanding the Influence of the COVID-19 Pandemic on Hospital-Based Mortality in Burundi: A Cross Sectional Study Comparing Two Time Periods. Epidemiology & Infection, 148, E280. https://doi.org/10.1017/S0950268820002770
[10]
Davin-Casalena, B., Jardin, M., Guerrera, H., et al. (2021) The Impact of the COVID-19 Pandemic on First-Line Primary Care in Southeastern France: Feedback on the Implementation of a Real-Time Monitoring System Based on Regional Health Insurance Data. Revue d’Épidémiologie et de Santé Publique, 69, 105-115.
[11]
Abdoulaye, M.B., Oumarou, B., Moussa, H., et al. (2021) Impact de la pandémie de la COVID-19 sur l’utilisation des services de santé dans la ville de Niamey: Une analyse dans 17 formations sanitaires de janvier à juin 2020. The Pan African Medical Journal, 39, Article No. 159.
https://doi.org/10.11604/pamj.2021.39.159.28282
[12]
das Neves Martins Pires, P.H., Macaringue, C., Abdirazak, A., et al. (2021) Covid-19 Pandemic Impact on Maternal and Child Health Services Access in Nampula, Mozambique: A Mixed Methods Research. BMC Health Services Research, 21, Article No. 860. https://doi.org/10.1186/s12913-021-06878-3
[13]
Kotlar, B., Gerson, E., Petrillo, S., Langer, A. and Tiemeier, H. (2021) The Impact of the COVID-19 Pandemic on Maternal and Perinatal Health: A Scoping Review. Reproductive Health, 18, Article No. 10.
https://doi.org/10.1186/s12978-021-01070-6
[14]
République du Burundi. Ministère de la Santé Publique et de la lutte contre le Sida (2015) Plan National de Développement de l’Informatique de la Santé (PNDIS).
[15]
République du Burundi. Ministere de la Santé Publique et de la lutte contre le Sida (2020) Programme National de la Santé de la Reproduction, Plan national de Développement de l’Informatique de Santé PNDIS II, 2020-2024.
[16]
Ministère de la Santé Publique et de la Lutte contre le Sida (2019) Plan Strategique du Systeme National D’Information Sanitaire 2019-2023.
[17]
Mohanan, P., Islam, Z., Hasan, M.M., et al. (2022) Malaria and COVID-19: A Double Battle for Burundi. African Journal of Emergency Medicine, 12, 27-29.
https://doi.org/10.1016/j.afjem.2021.10.006
[18]
Lecocq, A., Ammi, M. and Bellarbre, é. (2016) Le score de propension: Un guide méthodologique pour les recherches expérimentales et quasi expérimentales en éducation. Mesure et Evaluation en Education, 37, 69-100.
https://doi.org/10.7202/1035914ar
[19]
White, H. and Sabarwal, S. (2014) Méthodes et modèles quasi expérimentaux. UNICEF, New York.
[20]
République du Burundi. Ministère de la Santé Publique et de la lutte contre le Sida (2020) Manuel des procedures FBP Seconde Generation Revisé 2020.
[21]
Bonfrer, I., Soeters, R., van de Poel, E., et al. (2013) The Effects of Performance-Based Financing on the Use and Quality of Health Care in Burundi: An Impact Evaluation. The Lancet, 381, S19.
https://doi.org/10.1016/S0140-6736(13)61273-8
[22]
Falisse, J.B., Ndayishimiye, J., Kamenyero, V. and Bossuyt, M. (2015) Performance-Based Financing in the Context of Selective Free Health-Care: An Evaluation of Its Effects on the Use of Primary Health-Care Services in Burundi Using Routine Data. Health Policy and Planning, 30, 1251-1260.
https://doi.org/10.1093/heapol/czu132
[23]
Sarlon, E. (2014) Stratégies palliatives à la non-randomisation en santé mentale: Score de propension et techniques d’ajustement apparentées. Méthodologie appliquée à la prise en compte des facteurs de confusion dans le cas de la schizophrénie. Université Paris Sud-Paris XI, Orsay.
[24]
Ayaad, O., Alloubani, A., Alhajaa, E.A., et al. (2019) The Role of Electronic Medical Records in Improving the Quality of Health Care Services: Comparative Study. International Journal of Medical Informatics, 127, 63-67.
https://doi.org/10.1016/j.ijmedinf.2019.04.014
[25]
Katurura, M.C. and Cilliers, L. (2018) Electronic Health Record System in the Public Health Care Sector of South Africa: A Systematic Literature Review. African Journal of Primary Health Care & Family Medicine, 10, a1746.
https://doi.org/10.4102/phcfm.v10i1.1746
[26]
Ekhlas Abu Sharikh, S.R., Suifan, T. and Ayaad, O. (2020) The Impact of Electronic Medical Records’ Functions on the Quality of Health Services. British Journal of Healthcare Management, 26, 1-13. https://doi.org/10.12968/bjhc.2019.0056
[27]
Cline, G.B. and Luiz, J.M. (2013) Information Technology Systems in Public Sector Health Facilities in Developing Countries: The Case of South Africa. BMC Medical Informatics and Decision Making, 13, Article No. 13.
https://doi.org/10.1186/1472-6947-13-13
[28]
Ojo, A.I. and Popoola, S.O. (2015) Some Correlates of Electronic Health Information Management System Success in Nigerian Teaching Hospitals. Biomedical Informatics Insights, 7, BII.S20229. https://doi.org/10.4137/BII.S20229
[29]
Plantier, M., Havet, N., Durand, T., et al. (2017) Does Adoption of Electronic Health Records Improve the Quality of Care Management in France? Results from the French e-SI (PREPS-SIPS) Study. International Journal of Medical Informatics, 102, 156-165. https://doi.org/10.1016/j.ijmedinf.2017.04.002
[30]
Kern, L.M., Barrón, Y., Dhopeshwarkar, R.V., Edwards, A. and Kaushal, R. (2013) Electronic Health Records and Ambulatory Quality of Care. Journal of General Internal Medicine, 28, 496-503. https://doi.org/10.1007/s11606-012-2237-8
[31]
Rutten, L.J.F., Vieux, S.N., St. Sauver, J., et al. (2014) Patient Perceptions of Electronic Medical Records Use and Ratings of Care Quality. Patient Related Outcome Measures, 5, 17-23. https://doi.org/10.2147/PROM.S58967
[32]
Campanella, P., Lovato, E., Marone, C., et al. (2016) The Impact of Electronic Health Records on Healthcare Quality: A Systematic Review and Meta-Analysis. European Journal of Public Health, 26, 60-64.
https://doi.org/10.1093/eurpub/ckv122
[33]
Biltoft, J. and Finneman, L. (2018) Clinical and Financial Effects of Smart Pump-Electronic Medical Record Interoperability at a Hospital in a Regional Health System. American Journal of Health-System Pharmacy, 75, 1064-1068.
https://doi.org/10.2146/ajhp161058
[34]
Scott, D.J., Labro, E., Penrose, C.T., Bolognesi, M.P., Wellman, S.S. and Mather, R.C. (2018) The Impact of Electronic Medical Record Implementation on Labor Cost and Productivity at an Outpatient Orthopaedic Clinic. The Journal of Bone and Joint Surgery, 100, 1549-1556. https://doi.org/10.2106/JBJS.17.01339