There exists an infinite number of quarks u(∞) and anti-quarks ?at an infinite sub-layer level. These particles are considered as the ultimate building blocks of the universe, since they are structure-less and absolutely stable. These particles are also regarded as the non-baryonic dark matter, since the baryon number is zero and the Rp-parity is -1. It is emphasized that supersymmetric particle, neutralino has also the Rp-parity of -1 and well known good cold dark matter candidate. In modern particle physics, all ordinary particles have the Rp-parity of +1, while both the ultimate quark u(∞) and neutralino have the Rp-parity of -1. This means that these particles can only be created or annihilated in pairs in reactions of ordinary particles. From electron-positron annihilation experiments at high energies, it is shown that the prediction value from the ultimate quark u(∞) is in good agreement with many ring-storage collider experiments.
References
[1]
Sekine, M. (1985) The Structure of the Nucleon. International Journal of Theoretical Physics, 24, 701-705. https://doi.org/10.1007/BF00670877
[2]
Sekine, M. (2012) The Cantor Set Constructed from an Infinite Number of Quarks Constituting the Nucleon and the Dark Matter. Applied Physics Research, 4, 68-72. https://doi.org/10.5539/apr.v4n4p68
[3]
Sekine, M. (2021) Experimental Evidence of Non-Baryonic Dark Matter in High Energy Physics. Journal of High Energy Physics, Gravitation and Cosmology, 7, 873-879. https://doi.org/10.4236/jhepgc.2021.73049
[4]
Sekine, M. (2021) What Is the Universe Ultimately Made of? Journal of High Energy Physics, Gravitation and Cosmology, 7, 1161-1181. https://doi.org/10.4236/jhepgc.2021.73068
[5]
Riess, A.G., et al. (1998) Observational Evidence from Supernova for an Accelerating Universe and a Cosmological Constant. Astronomical Journal, 116, 1009-1038. https://doi.org/10.1086/300499
[6]
Perlmutter, S., et al. (1999) Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astronomical Journal, 517, 565-586. https://doi.org/10.1086/307221
[7]
Eisenstein, D.J., et al. (2005) Detection of the Binary Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astronomica Journal, 433, 560-574. https://doi.org/10.1086/466512
[8]
Astier, P., et al. (2006) The Supernova Legacy Survey: Measurement of ΩM, ΩΛ, and w from the First Year Data Set. Astronomy and Astrophysics, 447, 31-48. https://doi.org/10.1051/0004-6361:20054185
[9]
Spergel, D.N., et al. (2006) Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. The Astrophysical Journal Supplement Series, 170, 377-408. https://doi.org/10.1086/513700
[10]
Palanque-Delabrouille, N. (2007) Overview of Astroparticle Physics and Dark Matter Searches. International Journal of Modern Physics A, 22, 5735-5746. https://doi.org/10.1142/S0217751X07038979
[11]
Bertone, G., Hooper, D. and Silk, J. (2005) Particle Dark Matter: Evidence, Candidates and Constraints. Physics Reports, 405, 279-390. https://doi.org/10.1016/j.physrep.2004.08.031
[12]
Bergström, L. (2000) Non-Baryonic Dark Matter. Reports on Progress in Physics, 63, 793-841. https://doi.org/10.1088/0034-4885/63/5/2r3
[13]
Barbier, R., et al. (2005) R-Parity-Violating Supersymmetry. Physics Reports 420, 1-195. https://doi.org/10.1016/j.physrep.2005.08.006
[14]
Perkins, D.H. (2000) Introduction to High Energy Physics. 4th Edition, Cambridge University Press, London. https://doi.org/10.1017/CBO9780511809040
[15]
Halzen, F. and Martin, A.D. (1984) Quarks and Leptons: An Introductory Course in Modern Particle Physics. John Wily & Sons Inc., Hoboken.
[16]
Griffiths, D. (2008) Introduction to Elementary Particles. Wiley-VCH, Weinheim.
[17]
Aitchison, I.J.R. and Hey, A.J.G. (1993) Gauge Theories in Particle Physics. 2nd Edition, Institute of Physics Publishing, London.
[18]
Felst, R. (1981) Recent Results from PETRA on R, on Hadronic Final States and on Inclusive Hadron Spectra. DESY-Reports, DESY 81-075, C81-08-24-44.
[19]
Wolf, G. (1981) High Energy e+e- Interactions. DESY-Reports, 1981, DESY 81-086, DESY-REPORTS, 1981, DESY 81-075, C81-08-07-14.1-8.C81-09-20-2.
[20]
Particle Data Group (1990) R in e+e- Collsions, 33. Plots of Cross Sections and Related Quantities. Physics Letters B, 239, 1334.
[21]
Behrend, H.J., et al. (1982) Measurement of the Reaction or GeV. Zeitschrift für Physik C, 14, 283-288.
[22]
Giles, R., et al. (1984) Total Cross Section for Electron-Positron Annihilation into Hadron Final States in the Upsilon Energy Region. Physical Review D, 29, 1285-1549. https://doi.org/10.1103/PhysRevD.29.1285
[23]
Barte, W., et al. (1985) New Results on from the JADE Detector at PETRA. Zeitschrift für Physik C, 14, 53-57.
[24]
Adeva, B., et al. (1984) A Symmetry of Experimental Results from Mark J: High Energy Collisions at PETRA. Physics Reports, 109, 131-226. https://doi.org/10.1016/0370-1573(84)90124-8
[25]
Berger, Ch., et al. (1983) Measurement of the Muon Pair Asymmetry in Annihilation at GeV. Zeitschrift für Physik C, 21, 53-57.
[26]
TASSO Collaboration., Althoff, M., Braunschweig, W., et al. (1984) An Improved Measurement of Electroweak Coupling from and . Zeitschrift für Physik C, 22, 13-21. https://doi.org/10.1007/BF01577559
[27]
Gorishny, S.G, Kataev, A.L. and Larin, S.A. (1991) The Corrections to σtot ( ) and Γ ( ) in QCD. Physics Letters, 259, 144-150. https://doi.org/10.1016/0370-2693(91)90149-K
[28]
Feynman, R.P. (1969) Very High-Energy Collisions of Hadrons. Physical Review Letters, 23, 1415-1417. https://doi.org/10.1103/PhysRevLett.23.1415
[29]
Bjorken, J.D. and Paschos, E.A. (1969) Inelastic Electron-Proton and γ-Proton Scattering and the Structure of the Nucleon. Physical Review, 185, 1975-1582. https://doi.org/10.1103/PhysRev.185.1975
[30]
Sugita, K., Okamoto, Y. and Sekine, M. (2006) CP Violation via a Noncommutative SU(2)-Bundle Internal Structure. Physics Essays, 19, 55-58. https://doi.org/10.4006/1.3025780
[31]
Sugita, K., Okamoto, Y. and Sekine, M. (2008) Dark Matter Candidate Particles, CP Violation and Higgs Bosons. International Journal of Theoretical Physics, 7, 2875-2881. https://doi.org/10.1007/s10773-008-9720-3
[32]
Sugita, K., Okamoto, Y. and Sekine, M. (2021) Differential Geometry for Theoretical Physics: From Commutative Geometry to Noncommutative Geometry. 5th Edition, Morikita Publishing Co. Ltd., Tokyo, 314-324. (In Japanese)
[33]
Sugita, K., Okamoto, Y. and Sekine, M. (1993) Four Families in Preon Model. Il Nuovo Cimento A, 106, 771-775. https://doi.org/10.1007/BF02771492
[34]
Sugita, K., Okamoto, Y. and Sekine, M. (1994) CP Violation in Preon Model. Il Nuovo Cimento A, 107, 1793-1795. https://doi.org/10.1007/BF02780713
[35]
Sugita, K., Okamoto, Y. and Sekine, M. (1994) CP Violation in β Decay. Il Nuovo Cimento A, 107, 2875-2878. https://doi.org/10.1007/BF02730965
[36]
Okamoto, Y., Sugita, K. and Sekine, M. (1995) CP Violation in β Decay II. Il Nuovo Cimento A, 108, 1153-1156. https://doi.org/10.1007/BF02790322
[37]
Sekine, M., Sugita, Sugita, K. and Okamoto, Y. (1997) Anomaly Freedom in CP Violation Preon Model. International Journal of Theoretical Physics, 36, 1409-1412. https://doi.org/10.1007/BF02435934
[38]
Okamoto, Y., Sugita, K. and Sekine, M. (1994) Possible Removal of Preon Self-Energy Divergences in CP Violation Model. Il Nuovo Cimento A, 107, 1363-1367. https://doi.org/10.1007/BF02775775
[39]
Sugita, K., Okamoto, Y. and Sekine, M. (2011) Remarks on a Cosmological Constant by Spontaneous Symmetry Breaking. Physics Essays, 24, 136-138. https://doi.org/10.4006/1.3552879
[40]
Okamoto, Y., Sugita, K. and Sekine, M. (1999) Weyl Transformation in Fermi Systems. Annalen der Physik, 8, 829-836. https://doi.org/10.1002/(SICI)1521-3889(199912)8:10<829::AID-ANDP829>3.0.CO;2-L
[41]
Sugita, K., Okamoto, Y. and Sekine, M. (1998) Path Integrals and Quantum Electrodynamics. Morikita Publishing Co. Ltd., Tokyo, 193-216. (In Japanese)
[42]
Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. https://doi.org/10.1142/S0218271809015904
[43]
Corda, C., Cuesta, H.J.M. and Gomez, R.L. (2012) High-Energy Scalarons in R2 Gravity as a Model for Dark Matter in Galaxies. Astroparticle Physics, 35, 362-370. https://doi.org/10.1016/j.astropartphys.2011.08.009
[44]
Corda, C. (2018) The Future of Gravitational Theories in the Era of the Gravitational Wave Astronomy. International Journal of Modern Physics D, 27, Article ID: 1850060. https://doi.org/10.1142/S0218271818500608
[45]
Musha, T. and Sekine, M. (1976) Induced Emission of Gravitational Waves. Lettre al Nuovo Cimento, 16, 14-16. https://doi.org/10.1007/BF02719663