全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Solutions of Tolman-Oppenheimer-Volkov-Equation and of Kerr Spacetime with Matter and the Corresponding Star Models

DOI: 10.4236/jhepgc.2022.83052, PP. 724-767

Keywords: General Relativity, Tolman-Oppenheimer-Volkov Equation, Neutron Stars, Shell Stars

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Tolman-Oppenheimer-Volkov (TOV) equation is solved with a new ansatz: the external boundary condition with mass M0 and radius R1 is dual to the internal boundary condition with density ρbc and inner radius ri, and the two boundary conditions yield the same result. The inner boundary condition is imposed with a density ρbc and an inner radius ri, which is zero for the compact neutron stars, but non-zero for the shell-stars: stellar shell-star and galactic (supermassive) shell-star. Parametric solutions are calculated for neutron stars, stellar shell-stars, and galactic shell-stars. From the results, an M-R-relation and mass limits for these star models can be extracted. A new method is found for solving the Einstein equations for Kerr space-time with matter (extended Kerr space-time), i.e. rotating matter distribution in its own gravitational field. Then numerical solutions are calculated for several astrophysical models: white dwarf, neutron star, stellar shell-star, and galactic shell-star. The results are that shell-star star models closely resemble the behaviour of abstract black holes, including the Bekenstein-Hawking entropy, but have finite redshifts and escape velocity v < c and no singularity.

References

[1]  Fliessbach, T. (1990) Allgemeine Relativitätstheorie. Bibliographisches Institut, Leipzig.
[2]  Lattimer, J.M. and Prakash, M. (2000) Neutron Star Structure.
[3]  Visser, M. (2008) The Kerr Spacetime: A Brief Introduction.
[4]  Kokkotas, K.D. and Vavoulidis, M. (2005) Rotating Relativistic Stars. Journal of Physics, Conference Series, 8, 71-80.
https://doi.org/10.1088/1742-6596/8/1/009
[5]  Wasserman, A.L. (2011) Thermal Physics. Oregon State University, Corvallis.
https://doi.org/10.1017/CBO9780511902611
[6]  Helm, J. (2022) Mathematica-Notebook GRSchwarzTOVOrig3.nb.
https://www.researchgate.net/publication/358270854_Star_models_as_solutions_of_TOV-equation, calculation for non-rotating star-models
[7]  Papenbrock, Th. (2008) Physics of Nuclei. National Nuclear Physics Summer School.
[8]  Steiner, A.W., Hempel, M. and Fischer, T. (2013) Core-Collapse Supernova Equations of State Based on Neutron Star Observations. The Astrophysical Journal, 774, Article No. 17.
https://doi.org/10.1088/0004-637X/774/1/17
[9]  Hempel, M. (2014) Materie am Limit. Physik in unserer Zeit, 45, 12-20.
https://doi.org/10.1002/piuz.201301352
[10]  Hjorth-Jensen, M. (2007) Models for Nuclear Interactions. arxiv-nucl-th9811101.
[11]  Douchin, F. and Haensel, P. (2001) A Unified Equation of State of Dense Matter and Neutron Star Structure. Astronomy and Astrophysics, 380, 151-167.
[12]  Rosenfield, P. (2007) Properties of Rotating Neutron Stars. PhD Thesis, University of Washington, Seattle.
[13]  Urbanec, M. (2010) Equations of State and Structure of Neutron Stars. PhD Thesis, Silesian University in Opava, Opava.
[14]  Stergioulas, N. (2003) Rotating Stars in Relativity. Living Reviews in Relativity, 6, Article No. 3.
https://doi.org/10.12942/lrr-2003-3
[15]  Dain, S. (2012) Geometric Inequalities for Axially Symmetric Black Holes. Classical and Quantum Gravity, 29, Article ID: 073001.
[16]  Typel, S., et al. (2010) Composition and Thermodynamics of Nuclear Matter with Light Clusters. Physical Review C, 81, Article ID: 015803.
https://doi.org/10.1103/PhysRevC.81.015803
[17]  Chandrasekhar, S. (1992) The Mathematical Theory of Black Holes. Oxford University Press, Oxford.
[18]  Helm, J. (2022) Mathematica-Notebook KerrBLS2e.nb.
https://www.researchgate.net/publication/358270862_Star_models_as_solutions_of_Kerr-spacetime_with_matter, calculation for rotating compact neutron-star
[19]  Helm, J. (2022) word-doc KerrBLS_Results.doc.
https://www.researchgate.net/publication/358270862_Star_models_as_solutions_of_Kerr-spacetime_with_matter, concise results for rotating star-models
[20]  Helm, J. (2022) Mathematica-Notebook KerrBLS0e.nb.
https://www.researchgate.net/publication/358270862_Star_models_as_solutions_of_Kerr-spacetime_with_matter, calculation for rotating shell-star
[21]  Ferrarese, L. and Merritt, D. (2002) Supermassive Black Holes. Physics World, 15, 41-46.
[22]  Helm, J. (2022) Mathematica-Notebook KerrBLS1e.nb.
https://www.researchgate.net/publication/358270862_Star_models_as_solutions_of_Kerr-spacetime_with_matter, calculation for rotating galactic shell-star
[23]  Helm, J. (2022) Mathematica-Notebook KerrBLS1e.nb.
[24]  LIGO Cooperation (2018, November).
https://www.ligo.caltech.edu/image/ligo20171016a

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133