全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Center of Milky Way Galaxy

DOI: 10.4236/jhepgc.2022.83048, PP. 657-676

Keywords: World-Universe Model, Center of Milky Way Galaxy, Supermassive Compact Object, Event Horizon Telescope, Sagittarius A*, Multi-Component Dark Matter, Macroobjects Shell Model, Angular Momentum Problem

Full-Text   Cite this paper   Add to My Lib

Abstract:

In 2013, World-Universe Model (WUM) made one of the most important predictions: “Macroobjects of the World have cores made up of the discussed DM (Dark Matter) particles. Other particles, including DM and baryonic matter, form shells surrounding the cores” [1]. Prof. R. Genzel and A. Ghez confirmed this prediction: “The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy” (Nobel Prize in Physics 2020). On May 12, 2022, astronomers, using the Event Horizon Telescope, released the first image of the accretion disk around the Sagittarius A* (Sgr A*) produced using a worldwide network of radio observatories made in April 2017. These observations were obtained by a global array of millimeter wavelength telescopes and analyzed by an international research team that now numbers over 300 people, which claimed that Sgr A* is a Supermassive Black Hole (SBH). In the present paper, we analyze these results in frames of WUM. Based on the totality of all accumulated experimental results for the Center of the Milky Way Galaxy we conclude that Sgr A* is the DM Core of our Galaxy.

References

[1]  Netchitailo, V.S. (2013) Word-Universe Model.
https://vixra.org/pdf/1303.0077v7.pdf
[2]  Eisenhauer, F., Genzel, R., Alexander, T., Abuter, R., Paumard, T., Ott, T., et al. (2005) SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month. The Astrophysical Journal, 628, 246-259. arXiv: 0502129.
https://doi.org/10.1086/430667
[3]  von Fellenberg, S.D., Gillessen, S., Graciá-Carpio, J., Fritz, T.K., Dexter, J., et al. (2018) A Detection of Sgr A* in the Far Infrared. The Astrophysical Journal, 862, 129. arXiv:1806.07395.
https://doi.org/10.3847/1538-4357/aacd4b
[4]  The GRAVITY Collaboration (2019) A Geometric Distance Measurement to the Galactic Center Black Hole with 0.3% Uncertainty. Astronomy & Astrophysics, 625, Article No. L10. arXiv:1904.05721.
https://doi.org/10.1051/0004-6361/201935656
[5]  Bower, G.C. (Project Scientist) (2022) Focus on First Sgr A* Results from the Event Horizon Telescope. The Astrophysical Journal Letters, 930, Article No. L11.
https://iopscience.iop.org/journal/2041-8205/page/Focus_on_First_Sgr_A_Results.
[6]  Athens Bureau (2022) Sagittarius A*: The Milky Way’s Monster Black Hole Seen for the FIRST Time (IMAGES).
https://greekcitytimes.com/2022/05/13/sagittarius-a-milky-way/
[7]  Netchitailo, V. (2022) Hypersphere World-Universe Model: Centre of Our Galaxy. Journal of High Energy Physics, Gravitation and Cosmology, 8, 25-55.
https://doi.org/10.4236/jhepgc.2022.81003
[8]  Nambu, Y. (1952) An Empirical Mass Spectrum of Elementary Particles. Progress of Theoretical Physics, 7, 595-596.
https://doi.org/10.1143/PTP.7.5.595
[9]  Hooper, D. (2012) The Empirical Case For 10 GeV Dark Matter. Physics of the Dark Universe, 1, 1-23. arXiv: 1201.1303v1.
https://doi.org/10.1016/j.dark.2012.07.001
[10]  Bykov, A.M., Krassilchtchikov, A.M., Uvarov, Yu.A., Bloemen, H., Bocchino, F., et al. (2009) Isolated X-Ray—Infrared Sources in the Region of Interaction of the Supernova Remnant IC 443 with a Molecular Cloud. The Astrophysical Journal, 676, 1050-1063. arXiv: 0801.1255v1.
https://doi.org/10.1086/529117
[11]  Morretti, A., Vattakunnel, S., Tozzi, P., Salvaterra, R., Severgnini, P., Fugazza, D., et al. (2012) Spectrum of the Unresolved Cosmic X Ray Background: What Is Unresolved 50 Years after Its Discovery. Astronomy & Astrophysics, 548, Article No. A87. arXiv: 1210.6377v1.
https://doi.org/10.1051/0004-6361/201219921
[12]  Dirac, P. (1931) Quantized Singularities in the Electromagnetic Field. Proceedings of the Royal Society A, 133, 60-72.
https://doi.org/10.1098/rspa.1931.0130
http://users.physik.fu-berlin.de/~kleinert/files/dirac1931.pdf
[13]  Harari, H. (1979) A Schematic Model of Quarks and Leptons. Physics Letters B, 86, 83-86.
https://doi.org/10.1016/0370-2693(79)90626-9
[14]  Shupe, M.A. (1979) A Composite Model of Leptons and Quarks. Physics Letters B, 86, 87-92.
https://doi.org/10.1016/0370-2693(79)90627-0
[15]  D’Souza, I.A. and Kalman, C.S. (1992) Preons: Models of Leptons, Quarks and Gauge Bosons as Composite Objects. World Scientific, Singapore.
https://doi.org/10.1142/1700
[16]  Sukhoruchkin, S. (2009) A Role of Hadronic effects in Particle Masses. AIP Conference Proceedings, 1257, 622-626.
https://doi.org/10.1063/1.3483407
[17]  Boehm, C., Fayet, P. and Silk, J. (2003) Light and Heavy Dark Matter Particles. Physical Review D, 69, Article ID: 101302. arXiv: 0311143.
https://doi.org/10.1103/PhysRevD.69.101302
[18]  Netchitailo, V. (2019) Solar System. Angular Momentum. New Physics. Journal of High Energy Physics, Gravitation and Cosmology, 5, 112-139.
https://doi.org/10.4236/jhepgc.2019.51005
[19]  Netchitailo, V. (2015) 5D World-Universe Model. Multicomponent Dark Matter. Journal of High Energy Physics, Gravitation and Cosmology, 1, 55-71.
https://doi.org/10.4236/jhepgc.2015.12006
[20]  Wikipedia (2022) Neutron.
https://en.wikipedia.org/wiki/Neutron
[21]  Arrenberg, S., Baer, H., Barger, V., Baudis, L., Bauer, D., Buckley, J., et al. (2013) Complementarity of Dark Matter Experiments.
http://www-public.slac.stanford.edu/snowmass2013/docs/CosmicFrontier/Complementarity-27.pdf
[22]  Heeck, J. and Zhang, H. (2013) Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos. Journal of High Energy Physics, 2013, Article No. 164. arXiv:1211.0538.
https://doi.org/10.1007/JHEP05(2013)164
[23]  Aoki, M., Michael, D., Jisuke, K.and Hiroshi, T. (2012) Multi-Component Dark Matter Systems and Their Observation Prospects. Physical Review D, 86, Article ID: 076015. arXiv: 1207.3318.
https://doi.org/10.1103/PhysRevD.86.076015
[24]  Kusenko, A., Loewenstein, M. and Yanagihara, T. (2013) Moduli Dark Matter and the Search for Its Decay Line Using Suzaku X-Ray Telescope. Physical Review D, 87, Article ID: 043508.
https://doi.org/10.1103/PhysRevD.87.043508
[25]  Feldman, D., Liu, Z., Nath, P. and Peik, G. (2010) Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions. Physical Review D, 81, Article ID: 095017. arXiv:1004.0649.
https://doi.org/10.1103/PhysRevD.81.095017
[26]  Feng, J.L. (2010) Dark Matter Candidates from Particle Physics and Methods of Detection. Annual Review of Astronomy and Astrophysics, 48, 495-545. arXiv: 1003.0904.
https://doi.org/10.1146/annurev-astro-082708-101659
[27]  Zurek, K.M. (2009) Multi-Component Dark Matter. Physical Review D, 79, Article ID: 115002. arXiv: 0811.4429.
https://doi.org/10.1103/PhysRevD.79.115002
[28]  Lee, B.W. and Weinberg, S. (1977) Cosmological Lower Bound on Heavy-Neutrino Masses. Physical Review Letters, 39, 165-168.
https://doi.org/10.1103/PhysRevLett.39.165
[29]  Dicus, D.A., Kolb, E.W. and Teplitz, V.L. (1977) Cosmological Upper Bound on Heavy-Neutrino Lifetimes. Physical Review Letters, 39, 168-171.
https://doi.org/10.1103/PhysRevLett.39.168
[30]  Dicus, D.A., Kolb, E.W. and Teplitz, V.L. (1978) Cosmological Implications of Massive, Unstable Neutrinos. The Astrophysical Journal, 221, 327-341.
https://doi.org/10.1086/156031
[31]  Gunn, J.E., Lee, B.W., Lerche, I., Schramm, D.N. and Steigman, G. (1978) Some Astrophysical Consequences of the Existence of a Heavy Stable Neutral Lepton. The Astrophysical Journal, 223, 1015-1031.
https://doi.org/10.1086/156335
[32]  Stecker, F.W. (1978) The Cosmic Gamma-Ray Background from the Annihilation of Primordial Stable Neutral Heavy Leptons. The Astrophysical Journal, 223, 1032-1036.
https://doi.org/10.1086/156336
[33]  Zeldovich, Ya.B., Klypin, A.A., Khlopov, M.Yu., and Chechetkin, V.M. (1980) Astrophysical Constraints on the Mass of Heavy Stable Neutral Leptons. Soviet Journal of Nuclear Physics, 31, 664-669.
[34]  Netchitailo, V. (2019) Dark Matter Cosmology and Astrophysics. Journal of High Energy Physics, Gravitation and Cosmology, 5, 999-1050.
https://doi.org/10.4236/jhepgc.2019.54056
[35]  Netchitailo, V. (2017) Mathematical Overview of Hypersphere World-Universe Model. Journal of High Energy Physics, Gravitation and Cosmology, 3, 415-437.
https://doi.org/10.4236/jhepgc.2017.33033
[36]  Netchitailo, V. (2021) Hypersphere World-Universe Model. Journal of High Energy Physics, Gravitation and Cosmology, 7, 915-941.
https://doi.org/10.4236/jhepgc.2021.72042
[37]  Brands, S.A., de Koter, A., Bestenlehner, J., Crowther, P., Sundqvist, J., Puls, J., et al. (2022) The R136 Star Cluster Dissected with Hubble Space Telescope/STIS. III. The Most Massive Stars and Their Clumped Winds. Astronomy & Astrophysics, Forthcoming Article. arXiv:2202.11080.
https://doi.org/10.1051/0004-6361/202142742
[38]  Mehrgan, K., Netzer, H., Maiolino, R., Oliva, E., Croom, S., Corbett, E., et al. (2019) A 40-Billion Solar Mass Black Hole in the Extreme Core of Holm 15A, the Central Galaxy of Abell 85. The Astrophysical Journal, 887, Article No. 195. arXiv:1907.10608.
https://doi.org/10.3847/1538-4357/ab5856
[39]  Shemmer, O., Netzer, H., Maiolino, R., Oliva, E., Croom, S., Corbett, E., et al. (2004) Near-Infrared Spectroscopy of High Redshift Active Galactic Nuclei. I. A Metallicity-Accretion Rate Relationship. The Astrophysical Journal, 614, 547-557. arXiv:0406559.
https://doi.org/10.1086/423607
[40]  Choi, C.Q. (2017) Oldest Monster Black Hole Ever Found Is 800 Million Times More Massive than the Sun.
https://www.space.com/39000-oldest-farthest-monster-black-hole-yet.html
[41]  Argüelles, C.R., Díaz, M.I., Krut, A. and Yunis, R. (2021) On the Formation and Stability of Fermionic Dark Matter Haloes in a Cosmological Framework. Monthly Notices of the Royal Astronomical Society, 502, 4227-4246.
https://doi.org/10.1093/mnras/staa3986
[42]  Bliss, L. (2014) The Milky Way’s ‘City’ Just Got a New Name.
https://www.bloomberg.com/news/articles/2014-09-03/the-milky-way-s-city-just-got-a-new-name.
[43]  Heymans, C., Gray, M.E., Peng, C.Y., Van Waerbeke, L., Bell, E.F., Wolf, C., et al. (2008) The Dark Matter Environment of the Abell 901/902 Supercluster: A Weak Lensing Analysis of the HST STAGES Survey. Monthly Notices of the Royal Astronomical Society, 385, 1431-1442. arXiv:0801.1156.
https://doi.org/10.1111/j.1365-2966.2008.12919.x
[44]  Zwicky, F. (1933) Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6, 110-127.
[45]  Carr, B., Kühnel, F. and Visinelli, L. (2021) Constraints on Stupendously Large Black Holes. Monthly Notices of the Royal Astronomical Society, 501, 2029-2043.
https://doi.org/10.1093/mnras/staa3651
[46]  Netchitailo, V. (2022) Decisive Role of Dark Matter in Cosmology. Journal of High Energy Physics, Gravitation and Cosmology, 8, 115-142.
https://doi.org/10.4236/jhepgc.2022.81009
[47]  Ghez, A.M., Salim, S., Weinberg, N.N., Lu, J.R., Do, T., Dunn, J.K., et al. (2008) Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. Astrophysical Journal, 689, 1044-1062. arXiv:0808.2870.
https://doi.org/10.1086/592738
[48]  Lu, R., Krichbaum, T.P., Roy, A.L., Fish, V.L., Doeleman, S.S., Johnson, M.D., Akiyama, K., et al. (2018) Detection of Intrinsic Source Structure at ~3 Schwarzschild Radii with Millimeter-VLBI Observations of Sgr A*. Astrophysical Journal, 859, 60. arXiv:1805.09223.
https://doi.org/10.3847/1538-4357/aabe2e
[49]  Mills, E.A.C. (2020) Journey to the Center of the Galaxy: Following the Gas to Understand Past and Future Activity in Galaxy Nuclei. 236th Meeting of the American Astronomical Society.
https://mills.ku.edu/files/AAS_236_wide.pdf.
[50]  Chou, F., Anderson, J. and Watzke, M. (2015) NASA’s Chandra Detects Record-Breaking Outburst from Milky Way’s Black Hole.
https://www.nasa.gov/press/2015/january/nasa-s-chandra-detects-record-breaking-outburst-from-milky-way-s-black-hole.
[51]  NASA (2021) Nasa Releases New Image that Shows Milky Way’s Energized ‘Downtown’. https://www.theguardian.com/science/2021/may/29/nasa-milky-way-image-downtown
[52]  Hooper, D. and Goodenough, L. (2011) Dark Matter Annihilation in the Galactic Center as Seen by the Fermi Gamma Ray Space Telescope. Physics Letters B, 697, 412.
https://doi.org/10.1016/j.physletb.2011.02.029
[53]  Bond, H.E., Nelan, E.P., VandenBerg, D.A., Schaefer, G.H. and Harmer, D. (2013) HD 140283: A Star in the Solar Neighborhood that Formed Shortly After the Big Bang. The Astrophysical Journal Letters, 765, Article No. L12, arXiv:1302.3180.
https://doi.org/10.1088/2041-8205/765/1/L12
[54]  Bennett, C.L., Larson, D., Weiland, J.L., Jarosik, N., Hinshaw, G., Odegard, N., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. The Astrophysical Journal Supplement Series, 208, Article No. 20, arXiv:1212.5225v3.
https://doi.org/10.1088/0067-0049/208/2/20
[55]  Marchetti, T., Rossi, E.M. and Brown, A.G.A. (2018) Gaia DR2 in 6D: Searching for the Fastest Stars in the Galaxy. Monthly Notices of the Royal Astronomical Society, 490, 157-171.
https://doi.org/10.1093/mnras/sty2592
[56]  Koposov, S.E., Boubert, D., Li, T.S., Erkal, D., Da Costa, G.S., Zucker, D.B., et al. (2019) The Great Escape: Discovery of a Nearby 1700 km/s Star Ejected from the Milky Way by Sgr A*. Monthly Notices of the Royal Astronomical Society, 491, 2465-2480. arXiv:1907.11725.
https://doi.org/10.1093/mnras/stz3081
[57]  Clarke, C.J., Tazzari, M., Juhasz, A., Rosotti, G., Booth, R., Facchini, S., et al. (2018) High-Resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au. The Astrophysical Journal Letters, 866, Article No. L6.
https://doi.org/10.3847/2041-8213/aae36b
[58]  Aguilar, D.A. and Pulliam, C. (2010) Astronomers Find Giant, Previously Unseen Structure in our Galaxy. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, Release No. 2010-22.
[59]  Yang, L. and Razzaque, S. (2019) Constraints on Very High Energy Gamma-Ray Emission from the Fermi Bubbles with Future Ground-Based Experiments. Physical Review D, 99, Article ID: 083007. arXiv:1811.10970.
https://doi.org/10.1103/PhysRevD.99.083007
[60]  Beall, J.H. (2015) A Review of Astrophysical Jets. Proceedings of the XI Multifrequency Behaviour of High Energy Cosmic Sources Workshop, Palermo, 25-30 May 2015, Article ID: 58. Bibcode: 2015mbhe.confE..58B
[61]  Su, M. and Finkbeiner, D.P. (2012) Evidence for Gamma-Ray Jets in the Milky Way. The Astrophysical Journal, 753, Article No. 61, arXiv:1205.5852.
https://doi.org/10.1088/0004-637X/753/1/61
[62]  Ponti, G., Hofmann, F., Churazov, E., Morris, M.R., Haberl, F., Nandra, K., et al. (2019) An X-Ray Chimney Extending Hundreds of Parsecs above and Below the Galactic Centre. Nature, 567, 347-350.
https://doi.org/10.1038/s41586-019-1009-6
[63]  Hooper, D. and Slatyer, T.R. (2013) Two Emission Mechanisms in the Fermi Bubbles: A Possible Signal of Annihilating Dark Matter. Physics of the Dark Universe, 2, 118-138. arXiv:1302.6589.
https://doi.org/10.1016/j.dark.2013.06.003
[64]  NASA (2015) The Cosmic Distance Scale.
https://imagine.gsfc.nasa.gov/features/cosmic/local_supercluster_info.html

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133