全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Uncovering Small RNAs in Penicillium digitatum by Transcriptome Sequencing

DOI: 10.4236/ajps.2022.137067, PP. 1006-1022

Keywords: Penicillium digitatum, Transcriptome Sequencing, MicroRNA, Small Interfering RNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

Small RNAs in Penicillium digitatum were identified and analyzed via transcriptome sequencing on the BGISEQ-500 platform. A total of 15 predicted miRNAs and 10718 novel siRNAs were found. Their length distribution, sequence, predicted construction, base bias, expression levels and potential targets were determined as well. Through pathway and KEGG enrichment analysis, the miRNA target genes were mostly involved in carbohydrate metabolism, transport and catabolism, translation and amino acid metabolism. The target genes involved in aflatoxin biosynthesis and proteasome had a higher rich factor value. The results will provide a theoretical foundation for understanding the developmental and pathogenic mechanisms of P. digitatum at the transcriptional level.

References

[1]  Ghooshkhaneh, N.G., Golzarian, M.R. and Mamarabadi, M. (2018) Detection and Classification of Citrus Green Mold Caused by Penicillium digitatum Using Multispectral Imaging. Journal of the Science of Food and Agriculture, 98, 3542-3550.
https://doi.org/10.1002/jsfa.8865
[2]  Costa, J.H., Bazioli J.M., Pontes, J.G.D.M. and Fill T.P. (2019) Penicillium digitatum Infection Mechanisms in Citrus: What Do We Know So Far? Fungal Biology, 123, 584-593.
https://doi.org/10.1016/j.funbio.2019.05.004
[3]  Macarisin, D., Cohen, L., Eick, A., Rafael, G., Belausov, E., Wisniewski, M. and Droby, S. (2007) Penicillium digitatum Suppresses Production of Hydrogen Peroxide in Host Tissue during Infection of Citrus Fruit. Phytopathology, 97, 1491-1500.
https://doi.org/10.1094/PHYTO-97-11-1491
[4]  Prusky, D., McEvoy, J.L., Saftner, R., Conway, W.S. and Jones R. (2004) Relationship between Host Acidification and Virulence of Penicillium spp. on Apple and Citrus Fruit. Phytopathology, 94, 44-51.
https://doi.org/10.1094/PHYTO.2004.94.1.44
[5]  Ariza, M.R., Larsen T.O., Petersen, B.O., Duus, J.Ø. and Barrero, A.F. (2002) Penicillium digitatum Metabolites on Synthetic Media and Citrus Fruits. Journal of Agricultural and Food Chemistry, 50, 6361-6365.
https://doi.org/10.1021/jf020398d
[6]  Costa, J.H., Bazioli, J.M., Araújo E.D.V., Vendramini, P.H., Porto, M.C.D.F., Eberlin, M.N., Souza-Neto, J.A. and Fill, T.P. (2019) Monitoring Indole Alkaloid Production by Penicillium digitatum during Infection Process in Citrus by Mass Spectrometry Imaging and Molecular Networking. Fungal Biology, 123, 594-600.
https://doi.org/10.1016/j.funbio.2019.03.002
[7]  Marcet-Houben, M., Ballester, A., Fuente, B.D.L., Harries, E., Marcos, J., González-Candelas, L. and Gabaldón, T. (2012) Genome Sequence of the Necrotrophic Fungus Penicillium digitatum, the Main Postharvest Pathogen of Citrus. BMC Genomics, 13, Article No. 646.
https://doi.org/10.1186/1471-2164-13-646
[8]  Sun, X.P., Ruan, R.X., Lin, L.Y., Zhu, C.Y., Zhang, T.Y., Wang, M.S., Li, H.Y. and Yu, D.L. (2013) Genomewide Investigation into DNA Elements and ABC Transporters Involved in Imazalil Resistance in Penicillium digitatum. FEMS Microbiology Letters, 348, 11-18.
https://doi.org/10.1111/1574-6968.12235
[9]  Julca, I., Droby, S., Sela, N., Marcet-Houben, M. and Gabaldón T. (2015) Contrasting Genomic Diversity in Two Closely Related Postharvest Pathogens: Penicillium digitatum and Penicillium expasum. Genome Biology and Evolution, 8, 218-227.
https://doi.org/10.1093/gbe/evv252
[10]  Zhu, C.Y., Sheng, D.L., Wu, X.D., Wang, M.S., Hu, X., Li, H.Y. and Yu, D.L. (2017) Identification of Secondary Metabolite Biosynthetic Gene Clusters Associated with the Infection of Citrus Fruit by Penicillium digitatum. Postharvest Biology and Technology, 134, 17-21.
https://doi.org/10.1016/j.postharvbio.2017.07.011
[11]  Vu, T.X., Ngo, T.T., Mai, L.T.D., Bui, T., Le, D.H., Bui, H.T.V., Nguye, H.Q., Ngo, B.X. and Tran, V. (2018) A Highly Efficient Agrobacterium tumefaciens-Mediated Transformation System for the Postharvest Pathogen Penicillium digitatum Using DsRed and GFP to Visualize Citrus Host Colonization. Journal of Microbiological Methods, 144, 134-144.
https://doi.org/10.1016/j.mimet.2017.11.019
[12]  Hao, W.N., Li, H., Hu, M.Y., Yang, L. and Rizwan-ul-Haq, M. (2011) Integrated Control of Citrus Green and Blue Mold and Sour Rot by Bacillus amyloliquefaciens in Combination with Tea Saponin. Postharvest Biology and Technology, 59, 316-323.
https://doi.org/10.1016/j.postharvbio.2010.10.002
[13]  Kanetis, L., Förster, H. and Adaskaveg, J.E. (2010) Determination of Natural Resistance Frequencies in Penicillium digitatum Using a New Air-Sampling Method and Characterization of Fludioxonil- and Pyrimethanil-Resistant Isolates. Phytopathology, 100, 738-746.
https://doi.org/10.1094/PHYTO-100-8-0738
[14]  Papoutsis K, Mathioudakis, M.M., Hasperué, J.H. and Ziogas, V. (2019) Non-Chemical Treatments for Preventing the Postharvest Fungal Rotting of Citrus Caused by Penicillium digitatum (Green Mold) and Penicillium italicum (Blue Mold). Trends in Food Science & Technology, 86, 479-491.
https://doi.org/10.1016/j.tifs.2019.02.053
[15]  Bhatta, U.K. (2022) Alternative Management Approaches of Citrus Disease Caused by Penicillium digitatum (Green Mold) and Penicillium italicum (Blue Mold). Frontiers in Plant Science, 12, Article ID: 833328.
https://doi.org/10.3389/fpls.2021.833328
[16]  Azlan, A., Dzaki, N. and Azzam, G. (2016) Argonaute: The Executor of Small RNA Function. Journal of Genetics and Genomics, 43, 481-494.
https://doi.org/10.1016/j.jgg.2016.06.002
[17]  Yadav, A., Sanyal, I., Rai, S.P. and Lata, C. (2021) An Overview on MiRNA-Encoded Peptides in Plant Biology Research. Genomics, 113, 2385-2391.
https://doi.org/10.1016/j.ygeno.2021.05.013
[18]  Jonas, S. and Izaurralde, E. (2015) Towards a Molecular Understanding of MicroRNA-Mediated Gene Silencing. Nature Review Genetics, 16, 421-433.
https://doi.org/10.1038/nrg3965
[19]  Iwakawa, H.O. and Tomari, Y. (2015) The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends in Cell Biology, 25, 651-665.
https://doi.org/10.1016/j.tcb.2015.07.011
[20]  Meister, G. and Tuschl, M. (2004) Mechanisms of Gene Silencing by Double-Stranded RNA. Nature, 431, 343-349.
https://doi.org/10.1038/nature02873
[21]  Jinek, M. and Doudna, J.A. (2009) A Three-Dimensional View of the Molecular Machinery of RNA Interference. Nature, 457, 405-412.
https://doi.org/10.1038/nature07755
[22]  Meister, G. (2013) Argonaute Proteins: Functional Insights and Emerging Roles. Nature, 14, 864-872.
https://doi.org/10.1038/nrg3462
[23]  Langmead, B., Trapnell, C., Pop, M. and Salzberg, S.L. (2009) Ultrafast and Memory-Efficient Alignment of Short DNA Sequences to the Human Genome. Genome Biology, 10, Article No. R23.
https://doi.org/10.1186/gb-2009-10-3-r25
[24]  Nawrocki, E.P. and Eddy, S.R. (2013) Infernal 1.1: 100-Fold Faster RNA Homology Searches. Bioinformatics, 29, 2933-2935.
https://doi.org/10.1093/bioinformatics/btt509
[25]  Friedländer, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S. and Rajewsky, N. (2008) Discovering MicroRNAs from Deep Sequencing Data Using MiRDeep. Nature Biotechnology, 26, 407-415.
https://doi.org/10.1093/bioinformatics/btt509
[26]  Evers, M., Huttner, M., Dueck, A., Meister, G. and Engelmann, J.C. (2015) MiRA: Adaptable Novel MiRNA Identification in Plants Using Small RNA Sequencing Data. BMC Bioinformatics, 16, Article No. 370.
https://doi.org/10.1186/s12859-015-0798-3
[27]  Jagla, B., Aulner, N., Kelly, P.D., Song, D., Volchuk, A., Zatorski, A., Shum, D., Mayer, T., De Angelis, D.A., Ouerfelli, O., Rutishauser, U. and Rothman, J.E. (2005) Sequence Characteristics of Functional SiRNAs. RNA, 11, 864-872.
https://doi.org/10.1261/rna.7275905
[28]  Hoen, P.A.C., Ariyurek, Y., Thygesen, H.H., Vreugdenhil, E., Vossen, R.H.A.M., De Menezes, R.X., Boer, J.M., Van Ommen, G.B. and Den Dunnen, J.T. (2008) Deep Sequencing-Based Expression Analysis Shows Major Advances in Robustness, Resolution and Inter-Lab Portability over Five Microarray Plat Forms. Nucleic Acids Research, 36, e141.
https://doi.org/10.1093/nar/gkn705
[29]  Bonnet, E., He, Y., Billiau, K. and De Peer, Y.V. (2010) TAPIR, a Web Server for the Prediction of Plant MicroRNA Targets, Including Target Mimics. Bioinformatics, 26, 1566-1568.
https://doi.org/10.1093/bioinformatics/btq233
[30]  Borges, F. and Martienssen, R.A. (2015) The Expanding World of Small RNAs in Plants. Nature Reviews Molecular Cell Biology, 16, 727-741.
https://doi.org/10.1038/nrm4085
[31]  Castel, S.E. and Martienssen, R.A. (2013) RNA Interference (RNAi) in the Nucleus: Roles for Small RNA in Transcription, Epigenetics and Beyond. Nature Reviews Genetics, 14, 100-112.
https://doi.org/10.1038/nrg3355
[32]  Weiberg, A., Bellinger, M. and Jin, H.L. (2015) Conversations between Kingdoms: Small RNAs. Current Opinion in Biotechnology, 32, 207-215.
https://doi.org/10.1016/j.copbio.2014.12.025
[33]  Hisanaga, T., Miyashima, S. and Nakajima, K. (2014) Small RNAs as Positional Signal for Pattern Formation. Current Opinion in Plant Biology, 31, 37-42.
https://doi.org/10.1016/j.pbi.2014.06.005
[34]  Islam, W., Islam, S.U., Qasim, M. and Wang, L.D. (2017) Host-Pathogen Interactions Modulated by Small RNAs. RNA Biology, 7, 891-904.
https://doi.org/10.1080/15476286.2017.1318009
[35]  Nunes, C.C., Gowda M., Sailsbery, J., Xue, M.F., Chen, F., Brown, D.E., Oh, Y.Y., Mitchell, T.K. and Dean, R.A. (2011) Diverse and Tissue-Enriched Small RNAs in the Plant Pathogenic Fungus, Magnaporthe oryzae. BMC Genomics, 12, Article No. 288.
http://www.biomedcentral.com/1471-2164/12/288
https://doi.org/10.1186/1471-2164-12-288
[36]  Weiberg, A, Wang, M., Lin, F.M., Zhao, H.W., Zhang, Z.H., Kaloshian, I., Huang, H.D. and Jin, H.L. (2013) Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways. Science, 342, 118-123.
https://doi.org/10.1126/science.1239705
[37]  Weiberg, A. and Jin, H.L. (2015) Small RNAs—The Secret Agents in the Plant-Pathogen Interactions. Current Opinion in Plant Biology, 26, 87-94.
https://doi.org/10.1016/j.pbi.2015.05.033
[38]  Ye, R.Q., Chen, Z.L., Lian, B., Rowley, M.J., Xia, N., Chai, J.J., Li, Y., He, X.J., Wierzbicki, A.T. and Qi, Y.J. (2016) A Dicer-Independent Route for Biogenesis of SiRNAs That Direct DNA Methylation in Arabidopsis. Molecular Cell, 61, 222-235.
https://doi.org/10.1016/j.molcel.2015.11.015
[39]  Fahlgren, N., Bollmann, S.R., Kasschau, K.D., Cuperus, J.T., Press, C.M., Sullivan, C.M., Chapman, E.J., Hoyer, J.S., Gilbert, K.B., Grünwald, N.J. and Carrington, J.C. (2013) Phytophthora Have Distinct Endogenous Small RNA Populations That Include Short Interfering and MircroRNAs. PLOS ONE, 8, e77181.
https://doi.org/10.1371/journal.pone.0077181
[40]  Wang, B., Sun, Y.F., Song, N., Zhao, M.X., Liu, R., Feng, H., Wang, X.J. and Kang, Z.S. (2017) Puccinia striiformis f. sp. tritici MicroRNA-Like RNA 1 (Pst-milR1), an Important Pathogenicity Factor of Pst, Impairs Wheat Resistance to Pst by Suppressing the Wheat Pathogenesis-Related 2 Gene. New Phytologist, 215, 338-350.
https://doi.org/10.1111/nph.14577
[41]  Hu, X.Y., Hoden, K.P., Liao, Z., Asman, A. and Dixelius, C. (2022) Phytophthora infestans Ago1-Associated MiRNA Promotes Potato Late Blight Disease. New Phytologist, 233, 443-457.
https://doi.org/10.1111/nph.17758
[42]  Khatri, M. and Rajam, M.V. (2007) Targeting Polyamines of Aspergillus nidulans by SiRNA Specific to Fungal Ornithine Decarboxylase Gene. Medical Mycology, 45, 211-220.
https://doi.org/10.1080/13693780601158779
[43]  Rupainoole, R., Calin, G.A., Lopez-Berestein, G. and Sood, A.K. (2016) MicroRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discovery, 6, 235-246.
https://doi.org/10.1158/2159-8290.CD-15-0893
[44]  Mirra, P., Nigro, C., Prevenzano, I., Procopio, T., Leone, A., Raciti, G.A., Andreozzi, F., Longo, M., Fiory, F., Beguinot, F. and Miele, G. (2017) The Role of Mir-190a in Methylglyoxal-Induced Insulin Resistance in Endothelial Cells. Biochimica et Biophysica Acta, 183, 440-449.
https://doi.org/10.1016/j.bbadis.2016.11.018
[45]  Jiang, J., Xia, Y.M., Liang, Y., Yang, M.L., Zeng, W. and Zeng, X.C. (2018) MiR-190a-5p Participates in the Regulation of Hypoxia-Induced Pulmonary Hypertension by Targeting KLFI5 and Can Serve as a Biomarker of Diagnosis and Prognosis in Chronic Obstructive Pulmonary Disease Complicated with Pulmonary Hypertension. International Journal of COPD, 13, 3777-3790.
https://doi.org/10.2147/COPD.S182504
[46]  Yu, Y. and Cao, X.C. (2019) MiR-190-5p in Human Disease. Cancer Cell International, 19, 257.
https://doi.org/10.1186/s12935-019-0984-x
[47]  Shi, J.C., Zhou, T. and Chen, Q. (2022) Exploring the Expanding Universe of Small RNAs. Nature Cell Biology, 24, 415-423.
https://doi.org/10.1038/s41556-022-00880-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133