全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Existence of Nontrivial Solution for Klein-Gordon-Maxwell System with Logarithmic Nonlinearity

DOI: 10.4236/oalib.1109120, PP. 1-11

Keywords: Klein-Gordon-Maxwell System, Logarithmic Nonlinearity, Variational Methods, Nontrivial Solution, Mountain Pass Theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we study the nonautonomous Klein-Gordon-Maxwell system with logarithmic nonlinearity. We obtain the existence of nontrivial solution for this system by logarithmic Sobolev inequality and variational method.

References

[1]  Benci, V. and Fortunato, D. (2001) The Nonlinear Klein-Gordon Equation Coupled with the Maxwell Equations. Nonlinear Analysis: Theory, Methods & Applications, 47, 6065-6072. https://doi.org/10.1016/S0362-546X(01)00688-5
[2]  Benci, V. and Fortunato, D. (2002) Solitary Waves of the Nonlinear Klein-Gordon Equation Coupled with the Maxwell Equations. Reviews in Mathematical Physics, 14, 409-420. https://doi.org/10.1142/S0129055X02001168
[3]  D’Aprile, T. and Mugnai, D. (2004) Solitary Waves for Nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell Equations. Proceedings of the Royal Society of Edinburgh Section A, 134, 893-906. https://doi.org/10.1017/S030821050000353X
[4]  D’Aprile, T. and Mugnai, D. (2004) Non-Existence Results for the Coupled Klein-Gordon-Maxwell Equations. Advanced Nonlinear Studies, 4, 307-322. https://doi.org/10.1515/ans-2004-0305
[5]  Azzollini, A. and Pomponio, A. (2010) Ground State Solutions for the Nonlinear Klein-Gordon-Maxwell Equations. Topological Methods in Nonlinear Analysis, 35, 33-42.
[6]  Wang, F.Z. (2011) Ground-State Solutions for the Electrostatic Nonlinear Klein-Gordon-Maxwell System. Nonlinear Analysis: Theory, Methods & Applications, 74, 4796-4803. https://doi.org/10.1016/j.na.2011.04.050
[7]  Cassani, D. (2004) Existence and Non-Existence of Solitary Waves for the Critical Klein-Gordon Equation Coupled with Maxwell’s Equations. Nonlinear Analysis, 58, 733-747. https://doi.org/10.1016/j.na.2003.05.001
[8]  Wang, F.Z. (2011) Solitary Waves for the Klein-Gordon-Maxwell System with Critical Exponent. Nonlinear Analysis: Theory, Methods & Applications, 74, 827-835. https://doi.org/10.1016/j.na.2010.09.033
[9]  Cunha, P.L. (2012) Subcritical and Supercritical Klein-Gordon-Maxwell Equations without Ambrosetti-Rabinowitz Condition.
[10]  Liu, X.-Q. and Tang, C.-L. (2022) Infinitely Many Solutions and Concentration of Ground State Solutions for the Klein-Gordon-Maxwell System. Journal of Mathematical Analysis and Applications, 505, Article ID: 125521. https://doi.org/10.1016/j.jmaa.2021.125521
[11]  Gan, C.L., Xiao, T. and Zhang, Q.F. (2020) Existence Result for Fractional Klein-Gordon-Maxwell System with Quasicritical Potential Vanishing at Infinity. Journal of Applied Mathematics and Physics, 8, 1318-1327. https://doi.org/10.4236/jamp.2020.87101
[12]  Carriao, P.C., Cunha, P.L. and Miyagaki, O.H. (2012) Positive Ground State Solutions for the Critical Klein-Gordon-Maxwell System with Potentials. Nonlinear Analysis: Theory, Methods & Applications, 75, 4068-4078. https://doi.org/10.1016/j.na.2012.02.023
[13]  Che, G.F. and Chen, H.B. (2017) Existence and Multiplicity of Nontrivial Solutions for Klein-Gordon-Maxwell System with a Parameter. Journal of the Korean Mathematical Society, 54, 1015-1030. https://doi.org/10.4134/JKMS.j160344
[14]  Chen, S.T. and Tang, X.H. (2018) Infinitely Many Solutions and Least Energy Solutions for Klein-Gordon-Maxwell Systems with General Superlinear Nonlinearity. Computers & Mathematics with Applications, 75, 3358-3366. https://doi.org/10.1016/j.camwa.2018.02.004
[15]  Ding, L. and Li, L. (2014) Infinitely Many Standing Wave Solutions for the Non-linear Klein-Gordon-Maxwell System with Sign-Changing Potential. Computers & Mathematics with Applications, 68, 589-595. https://doi.org/10.1016/j.camwa.2014.07.001
[16]  Tang, X.H., Wen, L.X. and Chen, S.T. (2020) On Critical Klein-Gordon-Maxwell Systems with Super-Linear Nonlinearities. Nonlinear Analysis, 196, Article ID: 111771. https://doi.org/10.1016/j.na.2020.111771
[17]  Wang, L.X., Wang, X.M. and Zhang, L.Y. (2019) Ground State Solutions for the Critical Klein-Gordon-Maxwell System. Acta Mathematica Scientia, 39, 1451-1460. https://doi.org/10.1007/s10473-019-0521-y
[18]  d’Avenia, P., Pisani, L. and Siciliano, G. (2008) Klein-Gordon-Maxwell System in a Bounded Domain. Discrete and Continuous Dynamical Systems, 26, 135-149.
[19]  Wu, Y.H., Ge, B. and Miyagaki, O.H. (2019) Existence Results for the Klein-Gordon-Maxwell System in Rotationally Symmetric Bounded Domains. Zeitschrift für Analysis und ihre Anwendungen, 38, 209-229. https://doi.org/10.4171/ZAA/1635
[20]  Guo, L.F., Sun, Y. and Shi, G.N. (2022) Ground States for Fractional Nonlocal Equations with Logarithmic Nonlinearity. Opuscula Mathematica, 42, 157-178. https://doi.org/10.7494/OpMath.2022.42.2.157
[21]  Ji, C. and Szulkin, A. (2016) A Logarithmic Schrödinger Equation with Asymptotic Conditions on the Potential. Journal of Mathematical Analysis and Applications, 437, 241-254. https://doi.org/10.1016/j.jmaa.2015.11.071
[22]  Peng, L.Y., Suo, H.M., Wu, D.K., Feng, H.X. and Lei, C.Y. (2021) Multiple Positive Solutions for a Logarithmic Schrödinger-Poisson System with Singular Nonelinearity. Electronic Journal of Qualitative Theory of Differential Equations, 2021, 1-15. https://doi.org/10.14232/ejqtde.2021.1.90
[23]  Squassina, M. and Szulkin, A. (2015) Multiple Solutions to Logarithmic Schrödinger Equations with Periodic Potential. Calculus of Variations and Partial Differential Equations, 54, 585-597. https://doi.org/10.1007/s00526-014-0796-8
[24]  Zhang, Y.Y., Yang, Y. and Liang, S.H. (2022) Least Energy Sign-Changing Solu-tion for n-Laplacian Problem with Logarithmic and Exponential Nonlinearities. Journal of Mathematical Analysis and Applications, 505, Article ID: 125432. https://doi.org/10.1016/j.jmaa.2021.125432
[25]  d’Avenia, P., Pisani, L. and Siciliano, G. (2009) Dirichlet and Neumann Problems for Klein-Gordon-Maxwell Systems. Nonlinear Analysis: Theory, Methods & Applications, 71, e1985-e1995. https://doi.org/10.1016/j.na.2009.02.111
[26]  Gross, L. (1975) Logarithmic Sobolev Inequalities. American Journal of Mathematics, 97, 1061-1083. https://doi.org/10.2307/2373688
[27]  Willem, M. (1996) Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, 24. Birkhäuser Inc., Boston.
[28]  Evans, L.C. (2010) Partial Differential Equations, Volume 19 of Graduate Studies in Mathematics. 2nd Edition, American Mathematical Society, Providence.
[29]  Ambrosetti, A. and Rabinowitz, P.H. (1973) Dual Variational Methods in Critical Point Theory and Applications. Journal of Functional Analysis, 14, 349-381. https://doi.org/10.1016/0022-1236(73)90051-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133