|
SREBF2-AS1调控胆固醇合成代谢促进乳腺癌生长
|
Abstract:
目的:研究SREBF2-AS1调控胆固醇合成代谢和SREBF2促进乳腺癌生长作用和分子机制。方法:qRT-PCR检测相关基因的转录水平。干扰SREBF2-AS1和过表达SREBF2后,MTT实验、BrdU实验和凋亡实验研究SREBF2-AS1在乳腺癌中作用及分子机制。结果:SREBF2-AS1在乳腺癌组织和乳腺癌细胞株中高表达。干扰掉SREBF2-AS1后抑制乳腺癌的生长和诱导其凋亡。进一步研究发现其通过调控SREBF2和胆固醇代谢进而调控乳腺癌生长。结论:SREBF2-AS1通过调控SREBF2和胆固醇代谢促进乳腺癌生长。
Objective: To study the molecular mechanism of SREBF2-AS1 regulating cholesterol anabolism and SREBF2 promoting the growth of breast cancer. Methods: The transcription level of Genes was detected by qRT PCR. After interference with SREBF2-AS1 and overexpression of SREBF2, MTT assay, BrdU assay and apoptosis assay were used to study the role and molecular mechanism of SREBF2- AS1 in breast cancer. Results: SREBF2-AS1 was highly expressed in breast cancer tissues and breast cell lines. Interference with SREBF2-AS1 inhibits the growth and induces apoptosis of breast cancer. Further studies found that it regulates the growth of breast cancer by regulating SREBF2 and cholesterol metabolism. Conclusion: SREBF2-AS1 can promote the growth of breast cancer by regulating SREBF2 and cholesterol metabolism.
[1] | Desantis, C., Ma, J., Bryan, L. and Jemal, A. (2014) Breast Cancer Statistics, 2013. CA: A Cancer Journal for Clinicians, 64, 52-62. https://doi.org/10.3322/caac.21203 |
[2] | Horton, J.K., Jagsi, R., Woodward, W.A. and Ho, A. (2018) Breast Cancer Biology: Clinical Implications for Breast Radiation Therapy. International Journal of Radiation Oncology, Biology, Physics, 100, 23-37.
https://doi.org/10.1016/j.ijrobp.2017.08.025 |
[3] | Fontes-Sousa, M., Amorim, M., Salta, S., Palma, D.S.S., Henrique, R. and Jeronimo, C. (2019) Predicting Resistance to Endocrine Therapy in Breast Cancer: It’s Time for Epigenetic Biomarkers (Review). Oncology Reports, 41, 1431-1438.
https://doi.org/10.3892/or.2019.6967 |
[4] | Mercer, T.R., Dinger, M.E. and Mattick, J.S. (2009) Long Non-Coding RNAs: Insights into Functions. Nature Reviews Genetics, 10, 155-159. https://doi.org/10.1038/nrg2521 |
[5] | Kang, M.J., Abdelmohsen, K., Hutchison, E.R., et al. (2014) HuD Regulates Coding and Noncoding RNA to Induce APP → Aβ Processing. Cell Reports, 7, 1401-1409. https://doi.org/10.1016/j.celrep.2014.04.050 |
[6] | Mendell, J.T. (2016) Targeting a Long Noncoding RNA in Breast Cancer. The New England Journal of Medicine, 374, 2287-2289. https://doi.org/10.1056/NEJMcibr1603785 |
[7] | Touvier, M., Fassier, P., His, M., et al. (2015) Cholesterol and Breast Cancer Risk: A Systematic Review and Meta-Analysis of Prospective Studies. British Journal of Nutrition, 114, 347-357.
https://doi.org/10.1017/S000711451500183X |
[8] | Kitahara, C.M., Berrington, D.G.A., Freedman, N.D., et al. (2011) Total Cholesterol and Cancer Risk in a Large Prospective Study in Korea. Journal of Clinical Oncology, 29, 1592-1598. https://doi.org/10.1200/JCO.2010.31.5200 |
[9] | Melvin, J.C., Seth, D., Holmberg, L., et al. (2012) Lipid Profiles and Risk of Breast and Ovarian Cancer in the Swedish AMORIS Study. Cancer Epidemiology, Biomarkers & Prevention, 21, 1381-1384.
https://doi.org/10.1158/1055-9965.EPI-12-0188 |
[10] | Goldstein, J.L., Debose-Boyd, R.A. and Brown, M.S. (2006) Protein Sensors for Membrane Sterols. Cell, 124, 35-46.
https://doi.org/10.1016/j.cell.2005.12.022 |
[11] | Borgquist, S., Giobbie-Hurder, A., Ahern, T.P., et al. (2017) Cholesterol, Cholesterol-Lowering Medication Use, and Breast Cancer Outcome in the BIG 1-98 Study. Journal of Clinical Oncology, 35, 1179-1188.
https://doi.org/10.1200/JCO.2016.70.3116 |
[12] | Horton, J.D., Shimomura, I., Brown, M.S., Hammer, R.E., Goldstein, J.L. and Shimano, H. (1998) Activation of Cholesterol Synthesis in Preference to Fatty Acid Synthesis in Liver and Adipose Tissue of Transgenic Mice Overproducing Sterol Regulatory Element-Binding Protein-2. Journal of Clinical Investigation, 101, 2331-2339.
https://doi.org/10.1172/JCI2961 |
[13] | Shimano, H., Shimomura, I., Hammer, R.E., et al. (1997) Elevated Levels of SREBP-2 and Cholesterol Synthesis in Livers of Mice Homozygous for a Targeted Disruption of the SREBP-1 Gene. Journal of Clinical Investigation, 100, 2115-2124. https://doi.org/10.1172/JCI119746 |