全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

糖尿病肾病慢性炎症机制研究进展
Progress in the Study of Chronic Inflammatory Mechanism of Diabetic Nephropathy

DOI: 10.12677/ACM.2022.127869, PP. 6019-6025

Keywords: 糖尿病肾病,炎症,细胞焦亡,肠道菌群,内脂素,适应性免疫
Diabetic Kidney Disease
, Inflammation, Pyroptosis, Gut Microbiota, Visfatin, Adaptive Immunity

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着对糖尿病肾病(DKD)研究的不断深入,慢性炎症状态的地位越来越凸显。近年来,一种与天冬氨酸半胱氨酸蛋白水解酶(Caspase)-1相关的程序性细胞死亡机制,通过足细胞与肾小管上皮细胞的焦亡引起一系列炎症反应,最终导致肾功能恶化。肠道菌群异常在慢性肾脏病患者中致病证据越来越充分,其机制表现为菌群比例的失调(有害细菌增多、有益菌减少甚至缺如),产生炎症因子及氧化应激产物。另外,内脂素(Visfatin)在DKD发生发展中均发挥作用,参与胰岛素抵抗、调控糖脂代谢、增强炎症反应等过程。同样,适应性免疫系统及相关细胞因子同样有重要作用,通过T细胞、B细胞及白细胞介素(interleukin, IL)-17A、白细胞介素(interleukin, IL)-2、肿瘤坏死因子(TNF)和肿瘤坏死因子(TNF)受体等细胞因子共同导致蛋白尿的产生、肾功能的恶化。因此,了解诱导慢性炎症的各类分子机制在糖尿病肾病发生以及发展中的作用,对糖尿病肾病的早期识别及治疗有重要意义。
With the continuous deepening of the study of Diabetic Kidney Disease (DKD), the status of chronic inflammation is becoming more and more prominent. In recent years, a programming cell death mechanism related to cyspase-1 is caused by the scorching of foot cells and renal tubular epithelial cells, which causes a series of inflammatory reactions and eventually leads to kidney function worsen. The inferior of the intestinal flora is increasingly sufficient in patients with chronic kidney disease, and its mechanism is manifested as the disorders of the flora ratio (increasing harmful bacteria, reduced beneficial bacteria, or even lack of), producing inflammatory factor and oxidation stimulating products. In addition, Visfatin played a role in the development of DKD to participate in the process of participating in insulin resistance, regulating sugar fat metabolism, and enhancing inflammatory response. Similarly, the adaptive immune system and related cytokine also have an important role, T cells, B cells and cytokines such as interleukin (IL)-17A, interleukin (IL)-2, tumor necrosis factor (TNF) and tumor necrosis factor (TNF) receptor jointly lead to the production of pro-teinuria and the deterioration of renal function. Therefore, understanding the role of various types of molecular mechanisms that induce chronic inflammation in the occurrence and development of diabetic nephropathy is of great significance for the early identification and treatment of diabetic nephropathy.

References

[1]  IDF (2021) IDF Diabetes Atlas. 10th Edition. http://www.diabetesatlas.org
[2]  李嘉欣, 马婷婷, 南一, 等. 糖尿病肾病发病机制研究进展[J]. 临床肾脏志, 2019, 19(11): 860-864.
[3]  Xie, C., Wu, W., Tang, A., Luo, N. and Tan, Y. (2019) lncRNA GAS5/miR-452-5p Reduces Oxidative Stress and Pyroptosis of High-Glucose-Stimulated Renal Tubular Cells. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 2609-2617.
https://doi.org/10.2147/DMSO.S228654
[4]  Zhang, Z., et al. (2018) Caspase-11-Mediated Tubular Epithelial Py-roptosis Underlies Contrast-Induced Acute Kidney Injury. Cell Death & Disease, 9, 983.
https://doi.org/10.1038/s41419-018-1023-x
[5]  Nagata, M. (2016) Podocyte Injury and Its Consequences. Kidney International, 89, 1221-1230.
https://doi.org/10.1016/j.kint.2016.01.012
[6]  Cheng, Q., et al. (2020) Caspase-11/4 and Gasdermin D-Mediated Pyroptosis Contributes to Podocyte Injury in Mouse Diabetic Nephropathy. Acta Pharmacologica Sinica, 42, 954-963.
https://doi.org/10.1038/s41401-020-00525-z
[7]  Correa-Oliveira, R., Fachi, J.L., Vieira, A., et al. (2016) Regula-tion of Immune Cell Function by Short-Chain Fatty Acids. Clinical & Translational Immunology, 5, e73.
https://doi.org/10.1038/cti.2016.17
[8]  Matijasic, M., Mestrovic, T., Paljetak, H.C., Peric, M., Baresic, A. and Verbanac, D. (2020) Gut Microbiota beyond Bacteria-Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD. International Journal of Molecular Sciences, 21, 2668.
https://doi.org/10.3390/ijms21082668
[9]  Jayasudha, R., Das, T., Kalyana Chakravarthy, S., Sai Prashanthi, G., Bhargava, A., Tyagi, M., Rani, P.K., Pappuru, R.R. and Shivaji, S. (2020) Gut Mycobiomes Are Altered in People with Type 2 Diabetes Mellitus and Diabetic Retinopathy. PLOS ONE, 15, e0243077.
https://doi.org/10.1371/journal.pone.0243077
[10]  Kieffer, D.A., Piccolo, B.D., Vaziri, N.D., Liu, S., Lau, W.L., Khazaeli, M., Nazertehrani, S., Moore, M.E., Marco, M.L., Martin, R.J., et al. (2016) Resistant Starch Alters Gut Microbiome and Metabolomic Profiles Concurrent with Amelioration of Chronic Kidney Disease in Rats. The American Journal of Physiology-Renal Physiology, 310, F857-F871.
https://doi.org/10.1152/ajprenal.00513.2015
[11]  Xu, K.Y., Xia, G.H., Lu, J.Q., Chen, M.X., Zhen, X., Wang, S., You, C., Nie, J., Zhou, H.W. and Yin, J. (2017) Impaired Renal Function and Dysbiosis of Gut Microbiota Contribute to Increased Trimethylamine-N-Oxide in Chronic Kidney Disease Patients. Scientific Reports, 7, Article No. 1445.
https://doi.org/10.1038/s41598-017-01387-y
[12]  Jiang, S., Xie, S., Lv, D., Wang, P., He, H., Zhang, T., Zhou, Y., Lin, Q., Zhou, H., Jiang, J., et al. (2017) Alteration of the Gut Microbiota in Chinese Population with Chronic Kidney Disease. Scientific Reports, 7, Article No. 2870.
https://doi.org/10.1038/s41598-017-02989-2
[13]  Vaziri, N.D., Yuan, J., Nazertehrani, S., Ni, Z. and Liu, S. (2013) Chronic Kidney Disease Causes Disruption of Gastric and Small Intestinal Epithelial Tight Junction. American Journal of Nephrology, 38, 99-103.
https://doi.org/10.1159/000353764
[14]  Kanbay, M., Onal, E.M., Afsar, B., Dagel, T., Yerlikaya, A., Covic, A. and Vaziri, N.D. (2018) The Crosstalk of Gut Microbiota and Chronic Kidney Disease: Role of Inflammation, Pro-teinuria, Hypertension, and Diabetes Mellitus. International Urology and Nephrology, 50, 1453-1466.
https://doi.org/10.1007/s11255-018-1873-2
[15]  Sabatino, A., Regolisti, G., Cosola, C., et al. (2017) Intestinal Mi-crobiota in Type 2 Diabetes and Chronic Kidney Isease. Current Diabetes Reports, 17, 16.
https://doi.org/10.1007/s11892-017-0841-z
[16]  Tao, S., Li, L., Li, L., et al. (2019) Understanding the Gut-Kidney Axis among Biopsy-Proven Diabetic Nephropathy, Type 2 Diabetes Mellitus and Healthy Controls: An Analysis of the Gut Microbiota Composition. Acta Diabetologica, 56, 581-592.
https://doi.org/10.1007/s00592-019-01316-7
[17]  Mazloom, K., Siddiqi, I. and Covasa, M. (2019) Probiotics: How Effective Are They in the Fight against Obesity? Nutrients, 11, 258.
https://doi.org/10.3390/nu11020258
[18]  Lin, M.Y., de Zoete, M.R., van Putten, J.P., et al. (2015) Redirection of Epithelial Immune Responses by Short-Chain Fatty Acids through Inhibition of Histone Deacetylases. Frontiers in Immunology, 6, Article No. 554.
https://doi.org/10.3389/fimmu.2015.00554
[19]  Huang, W., Guo, H.L., Deng, X., et al. (2017) Short-Chain Fatty Acids Inhibit Oxidative Stress and Inflammation in Mesangial Cells Induced by High Glucose and Lipopolysaccharide. Experimental and Clinical Endocrinology & Diabetes, 125, 98-105.
https://doi.org/10.1055/s-0042-121493
[20]  Mafifi, A., Namazi, G., Soleimani, A., Bahmani, F., Aghadavod, E. and Asemi, Z. (2018) Metabolic and Genetic Response to Probiotics Supplementation in Patients with Diabetic Nephrop-athy: A Randomized, Double-Blind, Placebo- Controlled Trial. Food & Function, 9, 4763-4770.
https://doi.org/10.1039/C8FO00888D
[21]  Wang, H., Lu, Y., Yan, Y., et al. (2019) Promising Treatment for Type 2 Diabetes: Fecal Microbiota Transplantation Reverses Insulin Resistance and Impaired Islets. Frontiers in Cellular and Infection Microbiology, 9, Article No. 455.
https://doi.org/10.3389/fcimb.2019.00455
[22]  Sethi, J.K. and Vidal-Puig, A. (2005) Visfatin: The Missing Link between Intra-Abdominal Obesity and Diabetes? Trends in Molecular Medicine, 11, 344-347.
https://doi.org/10.1016/j.molmed.2005.06.010
[23]  Chyl-Surdacka, K.M., Bartosinska, J., Kowal, M., et al. (2020) Assessment of Visfatin Concentrations in the Serum of Male Psoriatic Patients in Relation to Metabolic Abnormalities. Advances in Clinical and Experimental Medicine, 29, 79-84.
https://doi.org/10.17219/acem/111820
[24]  Neubauer, K., Bednarz-Misa, I., Walecka-Zacharska, E., et al. (2019) Oversecretion and Overexpression of Nicotinamide Phos-phoribosyltransferase/Pre-B Colony-Enhancing Factor/Visfatin in Inflammatory Bowel Disease Reflects the Disease Ac-tivity, Severity of Inflammatory Response and Hypoxia. International Journal of Molecular Sciences, 20, 166.
https://doi.org/10.3390/ijms20010166
[25]  Cheleschi, S., Tenti, S., Mondanelli, N., et al. (2021) MicroRNA-34a and MicroRNA-181a Mediate Visfatin-Induced Apoptosis and Oxidative Stress via NF-κB Pathway in Human Osteoar-thritic Chondrocytes. Cells, 8, 874.
https://doi.org/10.3390/cells8080874
[26]  沈寒蕾, 赖战峰, 谭晓丹, 邓宏明, 黄媛, 张峥嵘, 肖常青. 2型糖尿病患者血浆内脂素与炎症因子的相关性研究[J]. 中国现代医学杂志, 2012, 22(7): 44-47.
[27]  唐灵, 陈春莲, 苏桂兰, 刘树娇, 陈虹. 2型糖尿病肾病患者内脂素、脂联素和C反应蛋白变化及其临床意义[J]. 中国全科医学, 2011, 14(23): 2616-2619.
[28]  Kumari, B. and Yadav, U.C.S. (2018) Adipokine Visfatin’s Role in Pathogenesis of Di-abesity and Related Metabolic Derangements. Current Molecular Medicine, 18, 116-125.
https://doi.org/10.2174/1566524018666180705114131
[29]  廖鑫, 邓凡曲, 杨丹, 等. 内脂素对大鼠成肌细胞PI3K/Akt信号通路及胰岛素敏感性影响的研究[J]. 中国糖尿病杂志, 2019, 27(9): 677-681.
[30]  Chow, F., Ozols, E., Nikolic-Paterson, D.J., et al. (2004) Macrophages in Mouse Type 2 Diabetic Nephropathy: Correlation with Diabetic State and Progressive Renal Injury. Kidney International, 65, 116-128.
https://doi.org/10.1111/j.1523-1755.2004.00367.x
[31]  Mahmoud, F. and Al-ozairi, E. (2013) Inflammatory Cyto-kines and the Risk of Cardiovascular Complications in Type 2. Diabetes, 35, 235-241.
https://doi.org/10.1155/2013/931915
[32]  Giese, I.-M., Schilloks, M.-C., Degroote, R.L., et al. (2021) Chronic Hyperglycemia Drives Functional Impairment of Lymphocytes in Diabetic INSC94Y Transgenic Pigs. Frontiers in Im-munology, 11, Article ID: 607473.
https://doi.org/10.3389/fimmu.2020.607473
[33]  Moon, J.-Y., Jeong, K.-H., Lee, T.-W., et al. (2012) Aberrant Recruitment and Activation of T Cells in Diabetic Nephropathy. American Journal of Nephrology, 35, 164-174.
https://doi.org/10.1159/000334928
[34]  Lim, A.K.H., Ma, F.Y., Nikolic-Paterson, D.J., et al. (2010) Lymphocytes Promote Albuminuria, But Not Renal Dysfunction or Histological Damage in a Mouse Model of Diabetic Renal Injury. Diabetologia, 53, 1772-1782.
https://doi.org/10.1007/s00125-010-1757-1
[35]  Kuriya, G., Uchida, T., Akazawa, S., et al. (2013) Double Defi-ciency in IL-17 and IFN-c Signalling Significantly Suppresses the Development of Diabetes in the NOD Mouse. Dia-betologia, 56, 1773-1780.
https://doi.org/10.1007/s00125-013-2935-8
[36]  Wu, C.-C., Chen, J.-S., Lu, K.-C., et al. (2010) Aberrant Cyto-kines/Chemokines Production Correlate with Proteinuria in Patients with Overt Diabetic Nephropathy. Clinica Chimica Acta, 411, 700-704.
https://doi.org/10.1016/j.cca.2010.01.036
[37]  Lampropoulou, I.T., Stangou, M., Sarafidis, P., et al. (2020) TNF-α Pathway and T-Cell Immunity Are Activated Early during the Development of Diabetic Nephropathy in Type II Diabetes Mellitus. Clinical Immunology, 215, Article ID: 108423.
https://doi.org/10.1016/j.clim.2020.108423
[38]  Serreze, D.V., Fleming, S.A., Chapman, H.D., et al. (1998) B Lymphocytes Are Critical Antigen-Presenting Cells for the Initia-tion of T Cell-Mediated Autoimmune Diabetes in Nonobese Diabetic Mice. The Journal of Immunology, 161, 3912-3918.
[39]  Smith, M.J., Simmons, K.M. and Cambier, J.C. (2017) B Cells in Type 1 Diabetes Mellitus and Dia-betic Kidney Disease. Nature Reviews Nephrology, 13, 712-720.
https://doi.org/10.1038/nrneph.2017.138

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133