|
一类Schr?dinger-Maxwell系统的多解
|
Abstract:
本文主要研究一类Schr?dinger-Maxwell系统,在一定条件下利用临界点理论中的Ekeland变分原理和山路定理证得该系统存在两个正解,并且其中一个解是正能量解,另一个解是负能量解。
This paper mainly studies a class of Schr?dinger-Maxwell system. Under certain conditions, using the Ekeland’s variational principle and Mountain Pass theorem, it is proved that the system has two positive solutions, one of which is a positive energy solution and the other is a negative energy solu-tion.
[1] | Vaira, G. (2011) Ground States for Schr?dinger-Poisson Type Systems. Ricerche di Matematica, 60, 263-297.
https://doi.org/10.1007/s11587-011-0109-x |
[2] | He, X.M. (2011) Multiplicity and Concentration of Positive Solu-tions for the Schr?dinger-Poisson Equations. Zeitschrift für angewandte Mathematik und Physik, 62, 869-889. https://doi.org/10.1007/s00033-011-0120-9 |
[3] | Sun, J. and Ma, S. (2016) Ground State Solutions for Some Schr?dinger-Poisson Systems with Periodic Potentials. Journal of Differential Equations, 260, 2119-2149. https://doi.org/10.1016/j.jde.2015.09.057 |
[4] | Alves, C.O., Souto, M.A.S. and Soares, S.H.M. (2017) A Sign-Changing Solution for the Schr?dinger-Poisson Equation in R3. Rocky Mountain Journal of Mathematics, 47, 1-25. https://doi.org/10.1216/RMJ-2017-47-1-1 |
[5] | Azzollini, A. and Pomponio, A. (2008) Ground State Solutions for the Nonlinear Schr?dinger-Maxwell Equations. Journal of Mathematical Analysis and Applications, 345, 90-108. https://doi.org/10.1016/j.jmaa.2008.03.057 |
[6] | Chen, S.J. and Tang, C.L. (2009) High Energy Solutions for the Superlinear Schr?dinger-Maxwell Equations. Nonlinear Analysis: Theory, Methods & Applications, 71, 4927-4934. https://doi.org/10.1016/j.na.2009.03.050 |
[7] | Li, Q.D., Su, H. and Wei, Z.L. (2010) Existence of Infinitely Many Large Solutions for the Nonlinear Schr?dinger-Maxwell Equations. Nonlinear Analysis: Theory, Methods & Applications, 72, 4264-4270.
https://doi.org/10.1016/j.na.2010.02.002 |
[8] | Zhang, F. and Cai, L. (2019) Bound and Ground States for a Class of Schr?dinger-Poisson Systems. Boundary Value Problems, 2019, Article No. 126. https://doi.org/10.1186/s13661-019-1238-5 |
[9] | Fang, X.D. (2019) Bound State Solutions for Some Non-Autonomous Asymptotically Cubic Schr?dinger-Poisson Systems. Ztschrift für angewandte Mathematik und Physik, 70, Article No. 50.
https://doi.org/10.1007/s00033-019-1096-0 |
[10] | Yang, M., Zhao, F. and Ding, Y. (2012) On the Existence of So-lutions for Schr?dinger-Maxwell Systems in R3. Rocky Mountain Journal of Mathematics, 42, 1655-1674. https://doi.org/10.1216/RMJ-2012-42-5-1655 |
[11] | Salvatore, A. (2006) Multiple Solitary Waves for a Non-Homogeneous Schr?dinger-Maxwell System in R3. Advanced Nonlinear Studies, 6, 157-169. https://doi.org/10.1515/ans-2006-0203 |
[12] | Bartsch, T. and Wang, Z.Q. (1995) Existence and Multiplicity Results for Some Superlinear Elliptic Problems on RN. Communications in Partial Differential Equations, 20, 1725-1741. https://doi.org/10.1080/03605309508821149 |
[13] | Zou, W.M. and Schechter, M. (2006) Critical Point Theory and Its Applications. Springer, New York. |
[14] | d’Avenia, P., Pomponio, A. and Vaira, G. (2011) Infinitely Many Positive Solutions for a Schr?dinger-Poisson System. Applied Mathematics Letters, 24, 661-664. https://doi.org/10.1016/j.aml.2010.12.002 |
[15] | Benci, V., Fortunato, D., Masiello, A. and Pisani, L. (1999) Soli-tons and the Electromagnetic Field. Mathematische Zeitschrift, 232, 73-102. https://doi.org/10.1007/PL00004759 |