|
肺动脉高压于高原地区的研究现状
|
Abstract:
我国是世界上高原面积最大的国家,越来越多的人因为工作或旅游等各种原因进入高原,一部分人因为无法适应高原特殊的环境会导致一系列头痛、嗜睡、疲劳和抑郁等症状甚至疾病。长期慢性低压缺氧是高原肺动脉高压(High altitude pulmonary hypertension, HAPH)的主要原因,HAPH是多种高原疾病的基础,导致右心功能不全和右心衰竭,甚至全心衰竭,具有较高的致残率和病死率,高原复杂的环境,仍需寻求更为优化的治疗方法及个体化治疗方式。本文阐述肺动脉高压于高原地区的研究现状。
China is the world’s largest plateau area of the country, more and more people because of work or tourism and other reasons into the plateau, part of the people because they can not adapt to the special environment of the plateau will lead to a series of headaches, lethargy, fatigue and depres-sion and other symptoms or diseases. Long-term chronic hypoxia is the main cause of pulmonary arterial hypertension at high altitude, and high altitude pulmonary hypertension is the basis of various altitude diseases, leading to right heart dysfunction and right heart failure, or even whole heart failure, with high disability rate and mortality. In the complex environment at high altitude, more optimized treatment and individual treatment methods are still needed. This paper reviews the research status of pulmonary arterial hypertension in plateau area.
[1] | Simonneau, G., Montani, D., Celermajer, D.S., et al. (2019) Haemodynamic Definitions and Updated Clinical Classifica-tion of Pulmonary Hypertension. European Respiratory Journal, 53, Article ID: 1801913.
https://doi.org/10.1183/13993003.01913-2018 |
[2] | 柳茵. 慢性高原病青海诊断标准[J]. 青海医学院学报, 2005(1): 3-5. |
[3] | Luks, A.M., Levett, D., Martin, D.S., et al. (2017) Changes in Acute Pulmonary Vascular Respon-siveness to Hypoxia during a Progressive Ascent to High Altitude (5300 m). Experimental Physiology, 102, 711-724.
https://doi.org/10.1113/EP086083 |
[4] | Sydykov, A., Mamazhakypov, A., Maripov, A., et al. (2021) Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. International Journal of Environmental Re-search and Public Health, 18, Article No. 1692. https://doi.org/10.3390/ijerph18041692 |
[5] | Rowan, S.C. and McLoughlin, P. (2014) Hypoxic Pulmonary Hypertension: The Paradigm Is Changing. Experimental Physiology, 99, 837-838. https://doi.org/10.1113/expphysiol.2014.078485 |
[6] | Gassmann, M., Cowburn, A., Gu, H., et al. (2021) Hypoxia-Induced Pulmonary Hypertension—Utilizing Experiments of Nature. British Journal of Pharmacology, 178, 121-131. https://doi.org/10.1111/bph.15144 |
[7] | Semenza, G.L. (2009) Regulation of Oxygen Homeostasis by Hypoxia-Inducible Factor 1. Physiology, 24, 97-106.
https://doi.org/10.1152/physiol.00045.2008 |
[8] | Hickey, M.M., Richardson, T., Wang, T., et al. (2010) The Von Hippel-Lindau Chuvash Mutation Promotes Pulmonary Hypertension and Fibrosis in Mice. The Journal of Clinical In-vestigation, 120, 827-839.
https://doi.org/10.1172/JCI36362 |
[9] | Witt, K.E. and Huerta-Sánchez, E. (2019) Convergent Evolution in Human and Domesticate Adaptation to High-Altitude Environments. Philosophical Transactions of the Royal Society B, 374, Ar-ticle ID: 20180235.
https://doi.org/10.1098/rstb.2018.0235 |
[10] | Wilkins, M.R., Ghofrani, H.A., Weissmann, N., et al. (2015) Patho-physiology and Treatment of High-Altitude Pulmonary Vascular Disease. Circulation, 131, 582-590. https://doi.org/10.1161/CIRCULATIONAHA.114.006977 |
[11] | Peng, Y., Cui, C., He, Y., et al. (2017) Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Molecular Bi-ology and Evolution, 34, 818-830. https://doi.org/10.1093/molbev/msw280 |
[12] | Talbot, N.P., Croft, Q.P., Curtis, M.K., et al. (2014) Contrasting Effects of Ascorbate and Iron on the Pulmonary Vascular Response to Hypoxia in Hu-mans. Physiological Reports, 2, e12220. https://doi.org/10.14814/phy2.12220 |
[13] | Yu, J., Yu, L., Li, Y., et al. (2020) Iron Deficiency Is a Possible Risk Factor Causing Right Heart Failure in Tibetan Children Living in High Altitude Area. Medicine, 99, e21133. https://doi.org/10.1097/MD.0000000000021133 |
[14] | Pen?Aloza, D., Arias-Stella, J., Sime, F., et al. (1964) The Heart and Pulmonary Circulation in Children at High Altitudes: Physiological, Anatomical, and Clinical Observations. Pediatrics, 34, 568-582.
https://doi.org/10.1542/peds.34.4.568 |
[15] | Li, J.J., Liu, Y., Xie, S.Y., et al. (2019) Newborn Screening for Con-genital Heart Disease Using Echocardiography and Follow-Up at High Altitude in China. International Journal of Car-diology, 274, 106-112.
https://doi.org/10.1016/j.ijcard.2018.08.102 |
[16] | Saxena, A. (2019) Status of Pediatric Cardiac Care in Developing Countries. Children, 6, Article No. 34.
https://doi.org/10.3390/children6020034 |
[17] | Pascall, E. and Tulloh, R.M. (2018) Pulmonary Hypertension in Congenital Heart Disease. Future Cardiology, 14, 343-353. https://doi.org/10.2217/fca-2017-0065 |
[18] | Chen, Q., Lu, L., Qi, G., et al. (2011) Susceptibility of Patients with Congenital Heart Disease to Pulmonary Hypertension at a High Altitude. Chinese Medical Journal, 91, 3120-3122. |
[19] | Wheatley, K., Creed, M. and Mellor, A. (2011) Haemato-logical Changes at Altitude. BMJ Military Health, 157, 38-42.
https://doi.org/10.1136/jramc-157-01-07 |
[20] | Singh, I. and Chohan, I. (1972) Blood Coagulation Changes at High Altitude Predisposing to Pulmonary Hypertension. British Heart Journal, 34, 611-617. https://doi.org/10.1136/hrt.34.6.611 |
[21] | Kjellstr?m, B., Nisell, M., Kylhammar, D., et al. (2019) Sex-Specific Differences and Survival in Patients with Idiopathic Pulmonary Arterial Hypertension 2008-2016. ERJ Open Research, 5, Article ID: 00075-2019.
https://doi.org/10.1183/23120541.00075-2019 |
[22] | Hester, J., Ventetuolo, C. and Lahm, T. (2019) Sex, Gender, and Sex Hormones in Pulmonary Hypertension and Right Ventricular Failure. Comprehensive Physiology, 10, 125-170. https://doi.org/10.1002/cphy.c190011 |
[23] | Hoeper, M.M., Huscher, D., Ghofrani, H.A., et al. (2013) Elderly Pa-tients Diagnosed with Idiopathic Pulmonary Arterial Hypertension: Results from the COMPERA Registry. International Journal of Cardiology, 168, 871-880.
https://doi.org/10.1016/j.ijcard.2012.10.026 |
[24] | Ventetuolo, C.E., Praestgaard, A., Palevsky, H.I., et al. (2014) Sex and Haemodynamics in Pulmonary Arterial Hypertension. European Respiratory Journal, 43, 523-530. https://doi.org/10.1183/09031936.00027613 |
[25] | Zhang, R., Dai, L.Z., Xie, W.P., et al. (2011) Survival of Chi-nese Patients with Pulmonary Arterial Hypertension in the Modern Treatment Era. Chest, 140, 301-309. https://doi.org/10.1378/chest.10-2327 |
[26] | Villafuerte, F.C. and Corante, N. (2016) Chronic Mountain Sickness: Clinical Aspects, Etiology, Management, and Treatment. High Altitude Medicine & Biology, 17, 61-69. https://doi.org/10.1089/ham.2016.0031 |
[27] | León-Velarde, F., Ramos, M.A., Hernández, J.A., et al. (1997) The Role of Menopause in the Development of Chronic Mountain Sickness. American Journal of Physiology-Regulatory, In-tegrative and Comparative Physiology, 272, R90-R94.
https://doi.org/10.1152/ajpregu.1997.272.1.R90 |
[28] | Gou, Q., Shi, R., Zhang, X., et al. (2020) The Prevalence and Risk Factors of High-Altitude Pulmonary Hypertension among Native Tibetans in Sichuan Province, China. High Alti-tude Medicine & Biology, 21, 327-335.
https://doi.org/10.1089/ham.2020.0022 |
[29] | Sime, F., Penaloza, D. and Ruiz, L. (1971) Bradycardia, Increased Cardiac Output, and Reversal of Pulmonary Hypertension in Altitude Natives Living at Sea Level. British Heart Journal, 33, 647-657.
https://doi.org/10.1136/hrt.33.5.647 |
[30] | Antezana, A., Antezana, G., Aparicio, O., et al. (1998) Pulmonary Hy-pertension in High-Altitude Chronic Hypoxia: Response to Nifedipine. European Respiratory Journal, 12, 1181-1185.
https://doi.org/10.1183/09031936.98.12051181 |
[31] | Kojonazarov, B., Isakova, J., Imanov, B., et al. (2012) Bosentan Reduces Pulmonary Artery Pressure in High Altitude Residents. High Altitude Medicine & Biology, 13, 217-223. https://doi.org/10.1089/ham.2011.1107 |
[32] | Aldashev, A., Kojonazarov, B., Amatov, T., et al. (2005) Phosphodiesterase Type 5 and High Altitude Pulmonary Hypertension. Thorax, 60, 683-687. https://doi.org/10.1136/thx.2005.041954 |
[33] | Richalet, J.P., Rivera-Ch, M., Maignan, M., et al. (2008) Acetazo-lamide for Monge’s Disease: Efficiency and Tolerance of 6-Month Treatment. American Journal of Respiratory and Critical Care Medicine, 177, 1370-1376.
https://doi.org/10.1164/rccm.200802-196OC |
[34] | Abe, K., Tawara, S., Oi, K., et al. (2006) Long-Term Inhibition of Rho-Kinase Ameliorates Hypoxia-Induced Pulmonary Hypertension in Mice. Journal of Cardiovascular Pharmacol-ogy, 48, 280-285.
https://doi.org/10.1097/01.fjc.0000248244.64430.4a |
[35] | Kojonazarov, B., Myrzaakhmatova, A., Sooronbaev, T., et al. (2012) Effects of Fasudil in Patients with High-Altitude Pulmonary Hypertension. European Respiratory Journal, 39, 496-498. https://doi.org/10.1183/09031936.00095211 |
[36] | 张晓庆, 王崇忠. 酚妥拉明联合合理喂养治疗小儿高原性心脏病合并营养性缺铁性贫血的疗效及对心功能的影响[J]. 医学综述, 2016, 22(11): 2234-2237. |
[37] | Wu, F., Yao, W., Yang, J., et al. (2017) Protective Effects of Aloperin on Monocroline-Induced Pul-monary Hypertension via Regulation of Rho A/Rho Kinsase Pathway in Rats. Biomedicine & Pharmacotherapy, 95, 1161-1168.
https://doi.org/10.1016/j.biopha.2017.08.126 |
[38] | 王亚峰, 王爱霞, 王生彪, 等. 甘西鼠尾草对大鼠高原肺动脉高压的干预作用及机制[J]. 中国应用生理学杂志, 2019, 35(6): 533-536. |
[39] | Luo, Y., Dong, H.Y., Zhang, B., et al. (2015) miR-29a-3p Attenuates Hypoxic Pulmonary Hypertension by Inhibiting Pulmonary Adventitial Fibroblast Ac-tivation. Hypertension, 65, 414-420.
https://doi.org/10.1161/HYPERTENSIONAHA.114.04600 |
[40] | Zhang, N., Dong, M., Luo, Y., et al. (2017) Danshensu Prevents Hypoxic Pulmonary Hypertension in Rats by Inhibiting the Proliferation of Pulmonary Artery Smooth Muscle Cells via TGF-β-Smad3-Associated Pathway. European Journal of Pharmacology, 820, 1-7. https://doi.org/10.1016/j.ejphar.2017.12.010 |
[41] | 安昌善, 柳济成, 孙红花, 等. 黄芪对低氧性肺动脉高压大鼠肺血管结构重建干预作用及机制的研究[J]. 中国心血管病研究杂志, 2003, 1(2): 146-148. |
[42] | Hampl, V., Bibova, J., Povy?ilová, V., et al. (2003) Dehydroepiandrosterone Sulphate Reduces Chronic Hypoxic Pulmonary Hy-pertension in Rats. European Respiratory Journal, 21, 862-865.
https://doi.org/10.1183/09031936.03.00084503 |