|
不同分子量下双网络水凝胶的力学性能研究
|
Abstract:
本文利用能量最小化原则,使用不同分子量的PEO SN和PAA SN两种单网络水凝胶聚合成最优的PEO-PAA DN水凝胶结构模型,对双网络水凝胶的力学性能进行研究。通过维里公式对力学性能进行评估,在600 PS内对双网络水凝胶施加300%的应变,得到组成双网络水凝胶的PEOSN和PAASN的聚合度和分子量均对双网络水凝胶的力学性能有显著影响。且PEO与PAA单链的聚合度分别为30和80左右、PEO SN和PAASN两层单网络分子比为5:9时,组成的双网络水凝胶力学性能最强。在此基础上,极大地推广了双网络水凝胶的应用。
In this paper, using the principle of energy minimization, two single-network hydrogels with different molecular weights, PEO SN and PAA SN, are used to polymerize the optimal PEO-PAA DN hydrogel structure model to study the mechanical properties of the double-network hydrogel. The mechanical properties are evaluated by the Veri formula, 300% strain is applied to the dual-network hydrogel within 600 PS, and the degree of polymerization and molecular weight of the PEO SN and PAA SN that constitute the dual-network hydrogel are all comparable to those of the dual-network hydrogel. The mechanical properties have a significant impact. And when the degree of polymerization of the single chains of PEO and PAA is about 30 and 80, respectively, and the molecular ratio of the two-layer single network of PEO SN and PAA SN is 5:9, the mechanical properties of the double-network hydrogel formed are the strongest. On this basis, the application of dual-network hydrogels has been greatly promoted.
[1] | Li, P., Liu, Y., Wang, Z., Xiao, X.M., Meng, G.Z., Wang, X.L., Guo, H.L. and Guo, H. (2022) Dry-Regulated Hydrogels with Anisotropic Mechanical Performance and Ionic Conductivity. Chinese Chemical Letters, 33, 871-876.
https://doi.org/10.1016/j.cclet.2021.08.010 |
[2] | Bouzid, M. and Del Gado, E. (2018) Network Topology in Soft Gels: Hardening and Softening Materials. Langmuir, 34, 773-781. https://doi.org/10.1021/acs.langmuir.7b02944 |
[3] | 王华煜. 石墨烯基纳米复合材料的制备及其对TKX-50催化作用的研究[D]: [硕士学位论文]. 太原: 中北大学, 2020. |
[4] | Lyu, Z., Rao, J., Qi, X.M., et al. (2022) Facile Approach for Preparation of Xylan-Based Double-Network Hydrogels. Paper and Biomaterials, 7, 19-27. |
[5] | Zhou, X.S., Lv, P.Y., Li, M.X., et al. (2022) Graphene Oxide Aerogel Foam Constructed All-Solid Electrolyte Membranes for Lithium Batteries. Langmuir, 38, 3257-3264. https://doi.org/10.1021/acs.langmuir.1c03432 |
[6] | Dai, T., Qing, X., Lu, Y. and Xia, Y. (2009) Conducting Hydrogels with Enhanced Mechanical Strength. Polymer, 50, 5236-5241. https://doi.org/10.1016/j.polymer.2009.09.025 |
[7] | 潘高峰, 高嵩, 王雨溪, 等. 聚丙酰胺-海藻酸盐双网络水凝胶的制备与力学性能[J]. 广东化工, 2022, 49(1): 44-47. |
[8] | Sun, J., Liu, H.X. and Liu, T.F. (2021) Synthesis, Crystal Structure and Characterization of a New Hydrogen-Bonded Organic Framework. Chinese Journal of Structural Chemistry, 2021, 40, 1082-1087. |
[9] | Moradi, H., Azizpour, H., Bahmanyar, H., et al. (2020) Molecular Dynamics Simulation of H2S Adsorption Behavior on the Surface of Activated Carbon. Inorganic Chemistry Communications, 118, Article ID: 108048.
https://doi.org/10.1016/j.inoche.2020.108048 |
[10] | Nonoyama, T. and Gong, J.P. (2015) Double-Network Hydrogel and Its Potential Biomedical Application: A Review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 229, 853-863.
https://doi.org/10.1177/0954411915606935 |