|
变系数非线性二阶问题有效的Fourier谱逼近
|
Abstract:
本文针对周期边界条件下变系数非线性二阶问题提出了一种有效的Fourier谱方法。首先,根据边界条件引入了适当的Sobolev空间及其逼近空间,建立了变系数非线性二阶问题的弱形式和相应的离散格式。基于这非线性的离散格式,我们建立了一种线性迭代算法,并给出了该算法相应的Matlab程序设计。最后,我们给出了数值算例,数值结果表明我们提出的算法是收敛的和高精度的。
In this paper, an efficient Fourier spectral method is proposed for nonlinear second-order problems with variable coefficients under periodic boundary conditions. Firstly, an appropriate Sobolev space and its approximation space are introduced according to the boundary conditions, and the weak form and the corresponding discrete scheme of the nonlinear second-order problem with variable coefficients are established. Based on the nonlinear discrete scheme, we establish a linear iterative algorithm and its Matlab program design. Finally, we give a numerical example, and the numerical results show that our proposed algorithm is convergent and highly accurate.
[1] | Griffiths, D.J. and Schroeter, D.F. (2018) Introduction to Quantum Mechanics. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316995433 |
[2] | Hasegawa, A. and Matsumoto, M. (2003) Optical Solitons in Fibers. In: Hasegawa, A. and Matsumoto, M., Eds., Optical Solitons in Fibers, Springer, Berlin, 41-59. https://doi.org/10.1007/978-3-540-46064-0_5 |
[3] | Menyuk, C.R. (1987) Stability of Solitons in Birefringent Opti-cal Fibers. I: Equal Propagation Amplitudes. Optics Letters, 12, 614-616. https://doi.org/10.1364/OL.12.000614 |
[4] | Menyuk, C.R. (1988) Stability of Solitons in Birefringent Optical Fi-bers. II. Arbitrary Amplitudes. Journal of the Optical Society of America B, 5, 392-402. https://doi.org/10.1364/JOSAB.5.000392 |
[5] | Sulem, C. and Sulem, P.L. (2007) The Nonlinear Schr?dinger Equation: Self-Focusing and Wave Collapse. Springer Science & Business Media, Berlin. |
[6] | Lowengrub, J. and Trus-kinovsky, L. (1998) Quasi-Incompressible Cahn-Hilliard Fluids and Topological Transitions. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 2617-2654.
https://doi.org/10.1098/rspa.1998.0273 |
[7] | Chen, L.Q. and Shen, J. (1998) Applications of Semi-Implicit Fouri-er-Spectral Method to Phase Field Equations. Computer Physics Communications, 108, 147-158. https://doi.org/10.1016/S0010-4655(97)00115-X |
[8] | Anderson, D.M., McFadden, G.B. and Wheeler, A.A. (1998) Diffuse-Interface Methods in Fluid Mechanics. Annual Review of Fluid Mechanics, 30, 139-165. https://doi.org/10.1146/annurev.fluid.30.1.139 |
[9] | Chen, L.Q. (2002) Phase-Field Models for Microstructure Evolution. Annual Review of Materials Research, 32, 113-140. https://doi.org/10.1146/annurev.matsci.32.112001.132041 |
[10] | Liu, C. and Shen, J. (2003) A Phase Field Model for the Mixture of Two Incompressible Fluids and Its Approximation by a Fourier-Spectral Method. Physica D: Nonlin-ear Phenomena, 179, 211-228.
https://doi.org/10.1016/S0167-2789(03)00030-7 |
[11] | Feng, X. and Prohl, A. (2003) Numerical Analysis of the Allen-Cahn Equation and Approximation for Mean Curvature Flows. Numerische Mathematik, 94, 33-65. https://doi.org/10.1007/s00211-002-0413-1 |
[12] | Feng, X. and Prohl, A. (2004) Error Analysis of a Mixed Finite Element Method for the Cahn-Hilliard Equation. Numerische Mathematik, 99, 47-84. https://doi.org/10.1007/s00211-004-0546-5 |
[13] | Ye, X. (2003) The Legendre Collocation Method for the Cahn-Hilliard Equation. Journal of Computational and Applied Mathematics, 150, 87-108. https://doi.org/10.1016/S0377-0427(02)00566-6 |
[14] | Kessler, D., Nochetto, R.H. and Schmidt, A. (2004) A Pos-teriori Error Control for the Allen-Cahn Problem: Circumventing Gronwall’s Inequality. ESAIM: Mathematical Modelling and Numerical Analysis, 38, 129-142.
https://doi.org/10.1051/m2an:2004006 |
[15] | Canuto, C., Hussaini, M.Y., Quarteroni, A., et al. (2007) Spectral Methods: Fundamentals in Single Domains. Springer Science & Business Media, Berlin. https://doi.org/10.1007/978-3-540-30726-6 |
[16] | Zhang, J. and Du, Q. (2009) Numerical Studies of Discrete Ap-proximations to the Allen-Cahn Equation in the Sharp Interface Limit. SIAM Journal on Scientific Computing, 31, 3042-3063. https://doi.org/10.1137/080738398 |
[17] | Eyre, D.J. (1998) Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation. MRS Online Proceedings Library (OPL), 529. https://doi.org/10.1557/PROC-529-39 |
[18] | Du, Q. and Nicolaides, R.A. (1991) Numerical Analysis of a Contin-uum Model of Phase Transition. SIAM Journal on Numerical Analysis, 28, 1310-1322. https://doi.org/10.1137/0728069 |
[19] | An, J., Shen, J. and Zhang, Z. (2018) The Spectral-Galerkin Approximation of Nonlinear Eigenvalue Problems. Applied Numerical Mathematics, 131, 1-15. https://doi.org/10.1016/j.apnum.2018.04.012 |