|
制备钛合金人工骨中的3D打印
|
Abstract:
3D打印作为近几十年快速发展起来的一种新型的制造工艺,因其快速成型、无模制造和个性化制造等优势被广泛运用于医疗领域。该制备技术将使医用钛合金假体更便宜、更实用,还能制造传统工艺难以制造的结构。但其制备的医用材料是否满足使用要求一直在被人们质疑和研究。本文主要针对近年来3D打印的TC4钛合金(Ti-6Al-4V)人工骨的可行性和近年来使用于临床的3D打印医用TC4钛合金人工骨治疗效果的研究进行综述,综述的内容主要集中在3D打印产品的质量、机械性能、生物相容性、生物安全性、生物毒性、耐腐蚀性和表面改性等,旨在为相关研究的开展提供一定的参考。
As a new manufacturing process rapidly developed in recent decades, 3D printing is widely used in the medical field because of its advantages of rapid molding, mold-free manufacturing and personalized manufacturing, etc. The preparation technique will make the medical titanium alloy prosthesis cheaper, more practical, and can manufacture structures that are difficult to manufacture by conventional processes. However, whether the medical materials prepared meet the use requirements has been questioned and studied. This paper mainly reviews the feasibility of 3D printed TC4 titanium alloy (Ti-6Al-4V) artificial bone and the therapeutic effect of 3D printed medical TC4 titanium alloy in recent years, focusing on the quality, mechanical properties, biocompatibility, biosafety, biotoxicity, corrosion resistance and surface modification of 3D printed products, aiming to provide some reference for related research.
[1] | 陈文杰. 3D打印工艺参数管理系统关键技术研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2019. |
[2] | Browne, M.P., Redondo, E. and Pumera, M. (2020) 3D Printing for Electrochemical Energy Applications. Chemical Reviews, 120, 2783-2810. https://doi.org/10.1021/acs.chemrev.9b00783 |
[3] | Jamróz, W., Szafraniec, J., Kurek, M., et al. (2018) 3D Printing in Pharmaceutical and Medical Applications—Recent Achievements and Challenges. Pharmaceutical Research, 35, 1-22. https://doi.org/10.1021/acs.chemrev.9b00783 |
[4] | Durfee, W.K. and Iaizzo, P.A. (2019) Medical Applications of 3D Printing. In: Iaizzo, P.A., Ed., Engineering in Medicine: Advances and Challenges, Academic Press, Cambridge, 527-543.
https://doi.org/10.1016/B978-0-12-813068-1.00021-X |
[5] | 施建平. 面向骨植入体3D打印的多孔结构构建研究[D]: [博士学位论文]. 南京: 东南大学, 2018. |
[6] | 胡婧, 陶梅平, 唐金颖. 3D打印TC4钛合金的成形工艺与热处理行为研究[J]. 热加工工艺, 2017, 46(16): 220-224. |
[7] | 李豪杰. 3D打印与传统加工TC4钛合金组织与力学性能对比研究[D]: [硕士学位论文]. 北京: 北方工业大学, 2019. |
[8] | 吴栋. 关于TC4基表面ZnO/HA复合涂层的制备与性能研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2020. |
[9] | Ganesh, N. and Rambabu, S. (2021) Finite Element Analysis of Porous Ti-6Al-4V Alloy Structures for Biomedical Applications. Journal of Physics: Conference Series, 2070, Article ID: 012224.
https://doi.org/10.1088/1742-6596/2070/1/012224 |
[10] | Shen, X. and Shukla, P. (2020) A Review of Titanium Based Orthopaedic Implants (Part-I): Physical Characteristics, Problems and the Need for Surface Modification. International Journal of Peening Science and Technology, 1, 301-332. |
[11] | Zheng, J., Chen, L., Chen, D., et al. (2019) Effects of Pore Size and Porosity of Surface-Modified Porous Titanium Implants on Bone Tissue Ingrowth. Transactions of Nonferrous Metals Society of China, 29, 2534-2545.
https://doi.org/10.1016/S1003-6326(19)65161-7 |
[12] | Kapat, K., Maity, P.P., Rameshbabu, A.P., et al. (2018) Simultaneous Hydrothermal Bioactivation with Nano-Topographic Modulation of Porous Titanium Alloys towards Enhanced Osteogenic and Antimicrobial Responses. Journal of Materials Chemistry B, 6, 2877-2893. https://doi.org/10.1039/C8TB00382C |
[13] | McGilvray, K.C., Easley, J., Seim, H.B., et al. (2018) Bony Ingrowth Potential of 3D-Printed Porous Titanium Alloy: A Direct Comparison of Interbody Cage Materials in an in Vivo Ovine Lumbar Fusion Model. The Spine Journal, 18, 1250-1260. https://doi.org/10.1016/j.spinee.2018.02.018 |
[14] | Xia, Y., Feng, C., Xiong, Y., et al. (2019) Mechanical Properties of Porous Titanium Alloy Scaffold Fabricated Using Additive Manufacturing Technology. International Journal of Applied Electromagnetics and Mechanics, 59, 1087-1095.
https://doi.org/10.3233/JAE-171197 |
[15] | 赵立明. 3D打印钛合金骨小梁骨干假体在山羊体内骨长入的实验研究[D]: [硕士学位论文]. 天津: 天津医科大学, 2017. |
[16] | 张兰, 王翔, 刘军, 等. 3D打印钛合金骨小梁多孔结构的拉伸性能[J]. 中国组织工程研究, 2020, 24(22): 3498-3503. |
[17] | Hedia, H.S., Aldousari, S.M., Timraz, H.A., et al. (2019) Stress Shielding Reduction via Graded Porosity of a Femoral Stem Implant. Materials Testing, 61, 695-704. https://doi.org/10.3139/120.111374 |
[18] | Al-Tamimi, A.A. (2021) 3D Topology Optimization and Mesh Dependency for Redesigning Locking Compression Plates Aiming to Reduce Stress Shielding. International Journal of Bioprinting, 7, 339-348.
https://doi.org/10.18063/ijb.v7i3.339 |
[19] | 李崇崇, 付步芳, 杜晓丹, 等. 3D打印个体化骨盆假体多孔结构物理性能检测方法研究[J]. 生物医学工程与临床, 2020, 24(2): 126-130. |
[20] | Zheng, Y., Han, Q., Wang, J., et al. (2020) Promotion of Osseointegration between Implant and Bone Interface by Titanium Alloy Porous Scaffolds Prepared by 3d Printing. ACS Biomaterials Science & Engineering, 6, 5181-5190.
https://doi.org/10.1021/acsbiomaterials.0c00662 |
[21] | 孙星. 3D打印可再生多孔骨骼支架及性能研究[D]: [硕士学位论文]. 济南: 山东建筑大学, 2020. |
[22] | Wallace, N., Schaffer, N.E., Aleem, I.S., et al. (2020) 3D-Printed Patient-Specific Spine Implants: A Systematic Review. Clinical Spine Surgery, 33, 400-407. https://doi.org/10.1097/BSD.0000000000001026 |
[23] | 彭文明, 刘云峰, 包霆威, 等. 3D打印多孔钛合金骨植入体设计制造研究[C]//中华口腔医学会. 第十六次全国口腔医学数字化学术会议暨中华口腔医学会第四届口腔医学计算机专业委员会第二次全体委员会议论文汇编. 2018: 19-20. |
[24] | 冯辰栋, 夏宇, 李祥, 等. 3D打印多孔钛支架微观孔隙结构和力学性能[J]. 医用生物力学, 2017, 32(3): 256-260. |
[25] | Zhao, X., Xiao, J., Sun, Y., et al. (2018) Novel 3D Printed Modular Hemipelvic Prosthesis for Successful Hemipelvic Arthroplasty: A Case Study. Journal of Bionic Engineering, 15, 1067-1074.
https://doi.org/10.1007/s42235-018-0094-9 |
[26] | Wei, R., Guo, W., Ji, T., et al. (2017) One-Step Reconstruction with a 3D-Printed, Custom-Made Prosthesis after Total En Bloc Sacrectomy: A Technical Note. European Spine Journal, 26, 1902-1909.
https://doi.org/10.1007/s00586-016-4871-z |
[27] | Ameen, W., Al-Ahmari, A., Mohammed, M.K., et al. (2018) Design, Finite Element Analysis (FEA), and Fabrication of Custom Titanium Alloy Cranial Implant Using Electron Beam Melting Additive Manufacturing. Advances in Production Engineering & Management, 13, 267-278. https://doi.org/10.14743/apem2018.3.289 |
[28] | Dekker, T.J., Steele, J.R., Federer, A.E., et al. (2018) Use of Patient-Specific 3D-Printed Titanium Implants for Complex Foot and Ankle Limb Salvage, Deformity Correction, and Arthrodesis Procedures. Foot & Ankle International, 39, 916-921. https://doi.org/10.1177/1071100718770133 |
[29] | Wu, Y., Chen, N., Xu, Z., et al. (2018) Application of 3D Printing Technology to Thoracic Wall Tumor Resection and Thoracic Wall Reconstruction. Journal of Thoracic Disease, 10, 6880-6890. https://doi.org/10.21037/jtd.2018.11.109 |
[30] | Yi, T., Zhou, C., Ma, L., et al. (2020) Direct 3-D Printing of Ti-6Al-4V/HA Composite Porous Scaffolds for Customized Mechanical Properties and Biological Functions. Journal of Tissue Engineering and Regenerative Medicine, 14, 486-496. https://doi.org/10.1002/term.3013 |
[31] | Kushwaha, A., Kumar, S.A. and Velu, R. (2021) Selective Laser Melting of Titanium Alloys: Effect of Processing Parameters on Microstructure and Mechanical Properties. International Journal of Mechatronics and Manufacturing Systems, 14, 128-142. https://doi.org/10.1504/IJMMS.2021.119156 |
[32] | 张玮航, 张虎, 李英姿, 等. 3D打印激光快速成型牙种植体的制备及其机械性能分析[J]. 吉林大学学报(医学版), 2017, 43(1): 52-56+216. |
[33] | Jia, L.M., Liu, R.L., Liang, Z.M., et al. (2016) Research of Structure and Hardness of TC4 Alloy for Centrifugal Castings. Advanced Material Engineering: Proceedings of the 2015 International Conference on Advanced Material Engineering, Guangzhou, 15-17 May 2015, 301-307. https://doi.org/10.1142/9789814696029_0036 |
[34] | 杨群, 陈长胜, 马忠贤, 王剑. GB/T 13810-2017《外科植入物用钛及钛合金加工材》标准解析[J]. 中国医疗器械信息, 2019, 25(1): 14-15+53. |
[35] | 马涛. 激光选区熔化成形Ti-6Al-4V疲劳性能研究[D]: [硕士学位论文]. 南京: 南京理工大学, 2019. |
[36] | Fousova, M. and Vojtech, D. (2018) Thermal Treatment of 3D-Printed Titanium Alloy. Manufacturing Technology, 18, 227-232. https://doi.org/10.21062/ujep/82.2018/a/1213-2489/MT/18/2/227 |
[37] | 吴文孟, 张倩, 宁宝麟, 等. 3D打印Ti-6Al-4V合金机械性能研究[J]. 全科口腔医学电子杂志, 2016, 3(10): 93-95. |
[38] | Wang, D., Wang, Y., Wu, S., et al. (2017) Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting. Materials, 10, 35-48. https://doi.org/10.3390/ma10010035 |
[39] | 朱加雷, 王凯, 马桂殿, 等. TC4钛合金激光选区熔化成形性能研究[J]. 应用激光, 2017, 37(6): 793-800. |
[40] | Skvortsova, S.V., German, M.A. and Spektor, V.S. (2019) Structure and Properties of Alloy Ti-6Al-4V Samples Fabricated by 3D Printing. Russian Metallurgy (Metally), 2019, 863-872. https://doi.org/10.1134/S0036029519090106 |
[41] | Smith, K.E., Dupont, K.M., Safranski, D.L., et al. (2016) Use of 3D Printed Bone Plate in Novel Technique to Surgically Correct Hallux Valgus Deformities. Techniques in Orthopaedics (Rockville, Md.), 31, 181-189.
https://doi.org/10.1097/BTO.0000000000000189 |
[42] | Zhang, C., Zhang, L., Liu, L., et al. (2020) Mechanical Behavior of a Titanium Alloy Scaffold Mimicking Trabecular Structure. Journal of Orthopaedic Surgery and Research, 15, 1-11. https://doi.org/10.1186/s13018-018-1031-7 |
[43] | 刘畅, 王辰宇, 刘贺, 等. 3D打印Ti6Al4V钛合金支架的力学性能及生物相容性[J]. 中国有色金属学报, 2018, 28(4): 758-765. |
[44] | Girolami, M., Boriani, S., Bandiera, S., et al. (2018) Biomimetic 3D-Printed Custom-Made Prosthesis for Anterior Column Reconstruction in the Thoracolumbar Spine: A Tailored Option Following En Bloc Resection for Spinal Tumors. European Spine Journal, 27, 3073-3083. https://doi.org/10.1007/s00586-018-5708-8 |
[45] | 芮敏, 郑欣, 张云庆, 等. 3D打印多孔钛合金支架修复兔桡骨骨缺损[J]. 中国组织工程研究, 2019, 23(18): 2789-2793. |
[46] | Tu, C.C., Tsai, P.I., Chen, S.Y., et al. (2020) 3D Laser-Printed Porous Ti6Al4V Dental Implants for Compromised Bone Support. Journal of the Formosan Medical Association, 119, 420-429. https://doi.org/10.1016/j.jfma.2019.07.023 |
[47] | 王蕊, 李美华, 周万琳. 3D打印钛合金种植体的制备及其骨结合性能[J]. 吉林大学学报(医学版), 2021, 47(1): 82-88. |
[48] | 周万琳. 选择性激光烧结3D打印钛合金种植体的制备及其体内研究[D]: [硕士学位论文]. 长春: 吉林大学, 2019. |
[49] | 张剑锋. 3D打印组配式节段型人工假体重建骨干缺损的实验研究[D]: [博士学位论文]. 天津: 天津医科大学, 2019. |
[50] | 向健, 杨立峰, 田胜慧, 等. 新型3D打印骨修复体的骨组织相容性研究[J]. 中国医学工程, 2018, 26(10): 26-29. |
[51] | Park, J.W., Song, C.A., Kang, H.G., et al. (2020) Integration of a Three-Dimensional-Printed Titanium Implant in Human Tissues: Case Study. Applied Sciences, 10, 553-561. https://doi.org/10.3390/app10020553 |
[52] | Zou, Y., Yang, Y., Han, Q., et al. (2018) Novel Exploration of Customized 3D Printed Shoulder Prosthesis in Revision of Total Shoulder Arthroplasty: A Case Report. Medicine, 97, e13282-e13288.
https://doi.org/10.1097/MD.0000000000013282 |
[53] | Wei, F., Li, Z., Liu, Z., et al. (2020) Upper Cervical Spine Reconstruction Using Customized 3D-Printed Vertebral Body in 9 Patients with Primary Tumors Involving C2. Annals of Translational Medicine, 8, 332-340.
https://doi.org/10.21037/atm.2020.03.32 |
[54] | Guder, W.K., Hardes, J., Nottrott, M., et al. (2021) Highly Cancellous Titanium Alloy (TiAl6V4) Surfaces on Three-Dimensionally Printed, Custom-Made Intercalary Tibia Prostheses: Promising Short- to Intermediate-Term Results. Journal of Personalized Medicine, 11, 351-360. https://doi.org/10.3390/jpm11050351 |
[55] | Zhang, Y., Zhang, L., Sun, R., et al. (2018) A new 3D Printed Titanium Metal Trabecular Bone Reconstruction System for Early Osteonecrosis of the Femoral Head. Medicine, 97, e11088-e11096.
https://doi.org/10.1097/MD.0000000000011088 |
[56] | Park, J.H., Odkhuu, M., Cho, S., et al. (2020) 3D-Printed Titanium Implant with Pre-Mounted Dental Implants for Mandible Reconstruction: A Case Report. Maxillofacial Plastic and Reconstructive Surgery, 42, 1-4.
https://doi.org/10.1186/s40902-020-00272-5 |
[57] | 景丽, 史文, 曹雨, 等. 3D打印钛合金多孔材料对体外成骨细胞系MC3T3-E1的生物安全性[J]. 基础医学与临床, 2020, 40(10): 1374-1380. |
[58] | 王骅, 王鹞, 张彪. 3D打印钛合金牙种植体的细胞毒性的研究[J]. 中国口腔种植学杂志, 2019, 24(1): 10-13. |
[59] | 李改明, 刘思雨, 战德松, 等. 3D打印医用钛合金的抗菌性能和体外生物相容性[J]. 材料研究学报, 2019, 33(2): 117-123. |
[60] | 李军, 魏建华, 张玉梅, 等. 新型医用钛合金生物相容性评价[J]. 实用口腔医学杂志, 2010, 26(5): 636-640. |
[61] | 王涵, 赵丹妹, 许建霞, 等. 3D打印骨科钛合金的亚慢性全身毒性研究[J]. 组织工程与重建外科杂志, 2020, 16(1): 6-10. |
[62] | Chioibasu, D., Achim, A., Popescu, C., et al. (2019) Prototype Orthopedic Bone Plates 3D Printed by Laser Melting Deposition. Materials, 12, 906-925. https://doi.org/10.3390/ma12060906 |
[63] | 肖维维. 3D打印钛合金下颌骨接骨板的有效性和安全性的初步研究[D]: [硕士学位论文]. 西安: 中国人民解放军空军军医大学口腔医学院, 2018. |
[64] | Mangano, C., Bianchi, A., Mangano, F.G., et al. (2020) Custom-Made 3D Printed Subperiosteal Titanium Implants for the Prosthetic Restoration of the Atrophic Posterior Mandible of Elderly Patients: A Case Series. 3D Printing in Medicine, 6, 1-14. https://doi.org/10.1186/s41205-019-0055-x |
[65] | Popovski, V., Benedetti, A., Panchevski, G., et al. (2020) Emergency State of Mandible Fracture Management in COVID-19 Pandemic Area: A Case Report. Journal of Morphological Sciences, 3, 107-113. |
[66] | Goldsmith, I., Evans, P.L., Goodrum, H., et al. (2020) Chest Wall Reconstruction with an Anatomically Designed 3-D Printed Titanium Ribs and Hemi-Sternum Implant. 3D Printing in Medicine, 6, 26.
https://doi.org/10.1186/s41205-020-00079-0 |
[67] | Park, E.K., Lim, J.Y., Yun, I.S., et al. (2016) Cranioplasty Enhanced by Three-Dimensional Printing: Custom-Made Three-Dimensional-Printed Titanium Implants for Skull Defects. Journal of Craniofacial Surgery, 27, 943-949.
https://doi.org/10.1097/SCS.0000000000002656 |
[68] | Zhang, Y., Zhang, L.L., Xiang, H., et al. (2017) The Effectiveness of 3D Printed Titanium Alloy Trabecular Reconstruction rod for the Treatment of Early Osteonecrosis of Femoral Head. Tianjin Medical Journal, 45, 1222-1227. |
[69] | Zhou, H., Liu, S., Li, Z., et al. (2022) 3D-Printed Vertebral Body for Anterior Spinal Reconstruction in Patients with Thoracolumbar Spinal Tumors. Journal of Neurosurgery: Spine, 1, 1-9. https://doi.org/10.3171/2022.1.SPINE21900 |
[70] | Geetha, M., Singh, A.K., Asokamani, R., et al. (2009) Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review. Progress in Materials Science, 54, 397-425. https://doi.org/10.1016/j.pmatsci.2008.06.004 |
[71] | Bocchetta, P., Chen, L.Y., Tardelli, J.D.C., et al. (2021) Passive Layers and Corrosion Resistance of Biomedical Ti-6Al-4V and β-Ti Alloys. Coatings, 11, 487-518. https://doi.org/10.3390/coatings11050487 |
[72] | Saini, M., Singh, Y., Arora, P., et al. (2015) Implant Biomaterials: A Comprehensive Review. World Journal of Clinical Cases: WJCC, 3, 52-57. https://doi.org/10.12998/wjcc.v3.i1.52 |
[73] | Mah, D., Pelletier, M.H., Lovric, V., et al. (2019) Corrosion of 3D-Printed Orthopaedic Implant Materials. Annals of Biomedical Engineering, 47, 162-173. https://doi.org/10.1007/s10439-018-02111-1 |
[74] | Fojt, J., Hybá?ek, V., Ka?enka, Z., et al. (2020) Influence of Surface Finishing on Corrosion Behaviour of 3D Printed TiAlV Alloy. Metals, 10, 1547-1557. https://doi.org/10.3390/met10111547 |
[75] | Bai, C., Li, P., Gang, T., et al. (2021) Influence of Processing Technology on Electrochemical Corrosion Behavior of Ti-6Al-4V Alloys. Corrosion, 77, 402-412. https://doi.org/10.5006/3490 |
[76] | Liang, C.Y., Jiang, X.J., Ji, R.L., et al. (2021) Preparation and Surface Modification of 3D Printed Ti-6Al-4V Porous Implant. Rare Metals, 40, 1164-1172. https://doi.org/10.1007/s12598-020-01413-5 |
[77] | Xu, J., Zhang, J., Shi, Y., et al. (2022) Surface Modification of Biomedical Ti and Ti Alloys: A Review on Current Advances. Materials, 15, 1749-1777. https://doi.org/10.3390/ma15051749 |
[78] | Wang, Q., Zhou, P., Liu, S., et al. (2020) Multi-Scale Surface Treatments of Titanium Implants for Rapid Osseointegration: A Review. Nanomaterials, 10, 1244-1270. https://doi.org/10.3390/nano10061244 |
[79] | Demirci, S., Dikici, T. and Güllüo?lu, A.N. (2022) Micro/Nanoscale Surface Modification of Ti6Al4V Alloy for Implant Applications. Journal of Materials Engineering and Performance, 31, 1503-1511.
https://doi.org/10.1007/s11665-021-06232-y |
[80] | Cheung, K.H., Pabbruwe, M.B., Chen, W.F., et al. (2021) Thermodynamic and Microstructural Analyses of Photocatalytic TiO2 from the Anodization of Biomedical-Grade Ti6Al4V in Phosphoric Acid or Sulfuric Acid. Ceramics International, 47, 1609-1624. https://doi.org/10.1016/j.ceramint.2020.08.277 |
[81] | Cervino, G., Fiorillo, L., Iannello, G., et al. (2019) Sandblasted and Acid Etched Titanium Dental Implant Surfaces Systematic Review and Confocal Microscopy Evaluation. Materials, 12, 1763-1762.
https://doi.org/10.3390/ma12111763 |
[82] | Luo, Y., Jiang, Y., Zhu, J., et al. (2020) Surface Treatment Functionalization of Sodium Hydroxide onto 3D Printed Porous Ti6Al4V for Improved Biological Activities and Osteogenic Potencies. Journal of Materials Research and Technology, 9, 13661-13670. https://doi.org/10.1016/j.jmrt.2020.09.076 |
[83] | Afrouzian, A., Avila, J.D. and Bandyopadhyay, A. (2021) Biotribocorrosion of 3D-Printed Silica-Coated Ti6Al4V for Load-Bearing Implants. Journal of Materials Research, 36, 3974-3984. https://doi.org/10.1557/s43578-021-00277-4 |
[84] | Huang, L., Cai, B., Huang, Y., et al. (2021) Comparative Study on 3D Printed Ti6Al4V Scaffolds with Surface Modifications Using Hydrothermal Treatment and Microarc Oxidation to Enhance Osteogenic Activity. ACS Omega, 6, 1465-1476. https://doi.org/10.1021/acsomega.0c05191 |
[85] | Shanmugapriya, P., Srinivasan, V., Karthikeyan, B., et al. (2020) Wear Study on Sol-Gel-Coated Ti-6Al-4V Alloy. Journal of Bio- and Tribo-Corrosion, 6, 1-12. https://doi.org/10.1007/s40735-020-00423-1 |
[86] | Qin, J., Yang, D., Maher, S., et al. (2018) Micro- and Nano-Structured 3D Printed Titanium Implants with a Hydroxyapatite Coating for Improved Osseointegration. Journal of Materials Chemistry B, 6, 3136-3144.
https://doi.org/10.1039/C7TB03251J |
[87] | Wang, C., Hu, H., Li, Z., et al. (2019) Enhanced Osseointegration of Titanium Alloy Implants with Laser Microgrooved Surfaces and Graphene Oxide Coating. ACS applied materials & interfaces, 11, 39470-39483.
https://doi.org/10.1021/acsami.9b12733 |
[88] | Li, L., Li, Y., Yang, L., et al. (2019) Polydopamine Coating Promotes Early Osteogenesis in 3D Printing Porous Ti6Al4V Scaffolds. Annals of Translational Medicine, 7, 240-253. https://doi.org/10.21037/atm.2019.04.79 |
[89] | Wang, S., Li, R., Li, D., et al. (2018) Fabrication of Bioactive 3D Printed Porous Titanium Implants with Sr ion-Incorporated Zeolite Coatings for Bone Ingrowth. Journal of Materials Chemistry B, 6, 3254-3261.
https://doi.org/10.1039/C8TB00328A |
[90] | Fielding, G.A., Roy, M., Bandyopadhyay, A., et al. (2012) Antibacterial and Biological Characteristics of Silver Containing and Strontium Doped Plasma Sprayed Hydroxyapatite Coatings. Acta Biomaterialia, 8, 3144-3152.
https://doi.org/10.1016/j.actbio.2012.04.004 |
[91] | Wang, B., Ma, L., Xie, L., et al. (2020) Chemical Stability, Antibacterial and Osteogenic Activities Study of Strontium-Silver Co-Substituted Fluorohydroxyapatite Nanopillars: A Potential Multifunctional Biological Coating. Ceramics International, 46, 27758-27773. https://doi.org/10.1016/j.ceramint.2020.07.275 |
[92] | O’Sullivan, C., O’Neill, L., O’Leary, N.D., et al. (2021) Osteointegration, Antimicrobial and Antibiofilm Activity of Orthopaedic Titanium Surfaces Coated with Silver and Strontium-Doped Hydroxyapatite Using a Novel Blasting Process. Drug Delivery and Translational Research, 11, 702-716. https://doi.org/10.1007/s13346-021-00946-1 |