|
Applied Physics 2022
SnO2@碳纳米角复合物基NO2气体传感器的研究
|
Abstract:
本文提出了一种简便、新颖的SnO2碳纳米复合材料的结构设计。2~3 nm的SnO2纳米颗粒均匀地分布在碳纳米角的表面。由于纳米复合材料的比表面积大,可以为NO2的检测提供足够的活性位点。SnO2纳米颗粒与碳框架之间的密切导电接触不仅为电子转移提供了途径,而且抑制了SnO2在结晶过程中的生长和团聚。所制备的SnO2复合碳纳米角纳米结构材料表现出较好的气体传感性能。值得注意的是,在室温下SnO2@CNHs纳米复合材料对NO2的快速检测比相应的SnO2要高。本文也深入地讨论了气敏传感机制。为开发高效新型气体传感材料提供思路。
A facile and novel architecture design of SnO2 impregnated carbon nanohorns nanocomposite (SnO2@CNHs) is presented. SnO2 nanoparticles (2~3 nm) are homogeneously distributed on the surface of spherical CNHs. Due to the large specific surface area, CNHs in the nanocomposite can provide enough active sites for the detection of NO2. The intimate conductive contact between the SnO2 nanoparticles and the carbon framework not only provides a pathway for electron transfer but also suppresses the growth and agglomeration of SnO2 during the crystallization process. As expected, the nanostructured materials exhibit preferable gas sensing properties. Remarkably, the confined SnO2@CNHs nanocomposite shows rapid detection of NO2 at room temperature (RT) than that of the corresponding SnO2.
[1] | Hermawan, A., Septiani, N.L.W., Taufik, A., Yuliarto, B., Suyatman and Yin, S. (2021) Advanced Strategies to Improve Performances of Molybdenum-Based Gas Sensors. Nano-Micro Letter, 13, Article No. 207.
https://doi.org/10.1007/s40820-021-00724-1 |
[2] | Choi, P.G., Izu, N., Shirahata, N. and Masuda, Y. (2019) Improvement of Sensing Properties for SnO2 Gas Sensor by Tuning of Exposed Crystal Face. Sensors and Actuators B: Chemical, 296, Article ID: 126655.
https://doi.org/10.1016/j.snb.2019.126655 |
[3] | Wang, Z.Y., et al. (2019) The Enhanced NO2 Sensing Properties of SnO2 Nanoparticles/Reduced Graphene Oxide Composite. Journal of Colloid and Interface Science, 537, 228-237. https://doi.org/10.1016/j.jcis.2018.11.009 |
[4] | Tang, H.Y., Li, Y.T., Robert, S., Leandro, S., et al. (2019) Ultra-High Sensitive NO2 Gas Sensor Based on Tunable Polarity Transport in CVD-WS2/IGZO p-N Heterojunction. ACS Applied Materials & Interfaces, 11, 40850-40859.
https://doi.org/10.1021/acsami.9b13773 |
[5] | Xiao, Z.H., et al. (2018) Recent Development in Nanocarbon Materials for Gas Sensor Applications. Sensors and Actuators B: Chemical, 274, 235-267. https://doi.org/10.1016/j.snb.2018.07.040 |
[6] | Korotcenkov, G. and Cho, B.K. (2017) Metal Oxide Composites in Conductometric Gas Sensors: Achievements and Challenges. Sensors and Actuators B: Chemical, 244, 182-210. https://doi.org/10.1016/j.snb.2016.12.117 |
[7] | Navale, S.T., Mane, A.T., Chougule, M.A., Sakhare, R.D., Nalage, S.R. and Patil, V.B. (2014) Highly Selective and Sensitive Room Temperature NO2 Gas Sensor Based on Polypyrrole Thin Films. Synthetic Metals, 189, 94-99.
https://doi.org/10.1016/j.synthmet.2014.01.002 |
[8] | Yan, D.L., Hu, M., Li, S., Liang, J.R., Wu, Y.Q. and Ma, S.Y. (2014) Electrochemical Deposition of ZnO Nanostructures onto Porous Silicon and Their Enhanced Gas Sensing to NO2 at Room Temperature. Electrochimica Acta, 115, 297-305. https://doi.org/10.1016/j.electacta.2013.10.007 |
[9] | Miller, D.R., Akbar, S.A. and Morris, P.A. (2014) Nanoscale Metal Oxide-Based Heterojunctions for Gas Sensing: A Review. Sensors and Actuators B: Chemical, 204, 250-272. https://doi.org/10.1016/j.snb.2014.07.074 |
[10] | Rasch, F., Postica, V., Schütt, F., Mishra, Y.K., et al. (2010) Hydrogen Sensing Using Pd-Functionalized Multi-Layer Graphene Nanoribbon Networks. Advanced Materials, 22, 4877-4880. https://doi.org/10.1002/adma.201001798 |