全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Study in the Variation of G

DOI: 10.4236/jhepgc.2022.83040, PP. 558-578

Keywords: Newton’s Gravitation Constant, Cosmology, Fundamental Constants

Full-Text   Cite this paper   Add to My Lib

Abstract:

There are indications that the Newtonian gravitational constant may not be a constant but may vary with respect to some other physical parameter. Various possible characterizations of Newton’s gravitational parameter as a function of the cosmic scale parameter are proposed and studied within the framework of classical Newtonian cosmology. A number of toy cosmologies with varying Newtonian gravitational parameters are developed and analyzed. The numerical solutions to the temporal evolution of the universe from the Friedmann equation are examined and discussed as well as kinematic observables. Finally, other avenues of research are addressed.

References

[1]  Tiesinga, E., Mohr, P.J., Newell, D.B. and Taylor, B.N. (2021) CODATA Recommended Values of the Fundamental Physical Constants: 2018. Reviews of Modern Physics, 93, Article ID: 025010.
https://doi.org/10.1103/RevModPhys.93.025010
https://link.aps.org/doi/10.1103/RevModPhys.93.025010
[2]  Weyl, H. (1917) Zur Gravitationstheorie. Annalen der Physik, 359, 117-145.
https://doi.org/10.1002/andp.19173591804
[3]  Eddington, A.S. (1931) Preliminary Note on the Masses of the Electron, the Proton, and the Universe. Mathematical Proceedings of the Cambridge Philosophical Society, 27, 15-19.
https://doi.org/10.1017/S0305004100009269
[4]  Dirac, P.A.M. (1937) The Cosmological Constants. Nature, 139, 323.
https://doi.org/10.1038/139323a0
[5]  Dirac, P.A.M. (1938) A New Basis for Cosmology. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 165, 199-208.
https://doi.org/10.1098/rspa.1938.0053
[6]  Dirac, P.A.M. (1974) Cosmological Models and the Large Numbers Hypothesis. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 338, 439-446.
https://doi.org/10.1098/rspa.1974.0095
[7]  Hanimeli, E.T., Lamine, B., Blanchard, A. and Tutusaus, I. (2020) Time-Dependent G in Einstein’s Equations as an Alternative to the Cosmological Constant. Physical Review D, 101, Article ID: 063513.
https://doi.org/10.1103/PhysRevD.101.063513
https://link.aps.org/doi/10.1103/PhysRevD.101.063513
[8]  Dungan, R. and Prosper, H.B. (2011) Varying-G Cosmology with Type Ia Supernovae. American Journal of Physics, 79, 57-62.
https://doi.org/10.1119/1.3486585
[9]  Sultana, J. (2015) Comment on “Varying-G Cosmology with Type Ia Supernovae” [Am. J. Phys. 79, 57-62 (2011)]. American Journal of Physics, 83, 570-572.
https://doi.org/10.1119/1.4907266
[10]  Uzan, J.P. (2011) Varying Constants, Gravitation and Cosmology. Living Reviews in Relativity, 14, Article No. 2.
https://doi.org/10.12942/lrr-2011-2
[11]  Goetz, A. and Secrest, J.A. (2021) Investigation of Arbitrary Large Spatial Dimensions in Anisotropic Bianchi Type-I Cosmologies with Variable Gravitational and Cosmological Parameters. Reports on Mathematical Physics, 88, 73-88.
https://doi.org/10.1016/S0034-4877(21)00057-4
[12]  Barrow, J.D. (1999) Cosmologies with Varying Light Speed. Physical Review D, 59, Article ID: 043515.
https://doi.org/10.1103/PhysRevD.59.043515
https://link.aps.org/doi/10.1103/PhysRevD.59.043515
[13]  Brans, C.H. and Dicke, R.H. (1961) Mach’s Principle and a Relativistic Theory of Gravitation. Physical Review, 124, 925-935.
https://doi.org/10.1103/PhysRev.124.925
https://link.aps.org/doi/10.1103/PhysRev.124.925
[14]  Garca-Bellido, J., Linde, A. and Linde, D. (1994) Fluctuations of the Gravitational Constant in the Inflationary Brans-Dicke Cosmology. Physical Review D, 50 730-750.
https://doi.org/10.1103/PhysRevD.50.730
https://link.aps.org/doi/10.1103/PhysRevD.50.730
[15]  Occhionero, F. and Vagnetti, F. (1975) Variation of the Gravitational Constant in Cosmological Models. Astronomy and Astrophysics, 44, 329-333.
[16]  Torres, D.F. (1999) Stellar Footsteps of a Variable G. Modern Physics Letters A, 15, 1007-1014.
https://doi.org/10.1142/S0217732399001061
[17]  Jamali, S. and Roshan, M. and Amendola, L. (2018) On the Cosmology of Scalar-Tensor-Vector Gravity Theory. Journal of Cosmology and Astroparticle Physics, 2018, 48.
https://doi.org/10.1088/1475-7516/2018/01/048
[18]  Linde, A.D. (1980) Gauge Theories, Time-Dependence of the Gravitational Constant and Antigravity in the Early Universe. Physics Letters B, 93, 394-396.
https://doi.org/10.1016/0370-2693(80)90350-0
https://www.sciencedirect.com/science/article/pii/0370269380903500
[19]  Raychaudhuri, A.K. and Bagchi, B. (1983) Temperature Dependent Gravitational Constant and Black Hole Physics. Physics Letters B, 124, 168-170.
https://doi.org/10.1016/0370-2693(83)91428-4
https://www.sciencedirect.com/science/article/pii/0370269383914284
[20]  Gilles, G.T. (1997) The Newtonian Gravitational Constant: Recent Measurements and Related Studies. Reports on Progress in Physics, 60, 151-225.
https://doi.org/10.1088/0034-4885/60/2/001
[21]  Shaw, P.E. and Davy, N. (1923) The Effect of Temperature on Gravitative Attraction. Physical Review, 21, 680-691.
https://doi.org/10.1103/PhysRev.21.680
https://link.aps.org/doi/10.1103/PhysRev.21.680
[22]  Leszczyńska, K. (2017) Quantum Cosmology and Varying Physical Constants. Universe, 3, Article No. 46.
https://doi.org/10.3390/universe3020046
[23]  Pilot, C. (2019) The Age of the Universe Predicted by a Time-Varying G Model? Journal of High Energy Physics, Gravitation and Cosmology, 5, 928-934.
https://doi.org/10.4236/jhepgc.2019.53048
[24]  Pilot, C. (2019) Is Quintessence an Indication of a Time-Varying Gravitational Constant? Journal of High Energy Physics, Gravitation and Cosmology, 5, 41-81.
https://doi.org/10.4236/jhepgc.2019.51003
[25]  Christodoulou, D.M. and Kazanas, D. (2019) Universal Expansion with Spatially Varying G. Monthly Notices of the Royal Astronomical Society: Letters, 487, L53-L57.
https://doi.org/10.1093/mnrasl/slz074
[26]  Laake, J.L. and Lowry, M.S. and DeLong, R.L. and Melin, S.R. and Carretta, J.V. (2019) Population Growth and Status of California Sea Lions. The Journal of Wildlife Management, 82, 583-595.
https://doi.org/10.1002/jwmg.21405
https://wildlife.onlinelibrary.wiley.com/doi/abs/10.1002/jwmg.21405
[27]  Tsoularis, A. and Wallace, J. (2002) Analysis of Logistic Growth Models. Mathematical Biosciences, 179, 21-55.
https://doi.org/10.1016/S0025-5564(02)00096-2
https://www.sciencedirect.com/science/article/pii/S0025556402000962
[28]  Bose, T. and Trimper, S. (2009) Stochastic Model for Tumor Growth with Immunization. Physical Review E, 79, Article ID: 051903.
https://doi.org/10.1103/PhysRevE.79.051903
https://link.aps.org/doi/10.1103/PhysRevE.79.051903
[29]  Dong, G., Lai, K.K. and Yen, J. (2010) Credit Scorecard Based on Logistic Regression with Random Coefficients. Procedia Computer Science, 1, 2463-2468.
https://doi.org/10.1016/j.procs.2010.04.278
https://www.sciencedirect.com/science/article/pii/S1877050910002796
[30]  Guenault, A.M. (2007) Statistical Physics. 2nd Edition, Springer, Dordrecht.
[31]  Ayuso, I. and Mimoso, J.P. and Nunes, N.J. (2019) What If Newton’s Gravitational Constant Was Negative? Galaxies, 7, Article No. 38.
https://doi.org/10.3390/galaxies7010038
https://www.mdpi.com/2075-4434/7/1/38
[32]  Menon, A., Mehrotra, K., Mohan, C.K. and Ranka, S. (2010) Characterization of a Class of Sigmoid Functions with Applications to Neural Networks. Neural Networks, 5, 819-835.
https://doi.org/10.1016/0893-6080(95)00107-7
https://www.sciencedirect.com/science/article/pii/0893608095001077
[33]  Dunning, A.J.., Kensler, J., Coudeville, L. and Bailleux, F. (2015) Some Extensions in Continuous Models for Immunological Correlates of Protection. BMC Medical Research Methodology, 15, Article No. 107.
https://doi.org/10.1186/s12874-015-0096-9
[34]  Vieira, H.S. and Bezerra, V.B. (2014) Lagrangian Formulation of Newtonian Cosmology. Revista Brasileira de Ensino de Física, 36, Article No. 3310.
https://doi.org/10.1590/S1806-11172014000300010
[35]  Jeffreys, H. and Jeffreys, B. (1999) Methods of Mathematical Physics. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139168489
[36]  Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ. and Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F. and van Mulbregt, P. and SciPy 1.0 Contributors (2020) SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261-272.
https://doi.org/10.1038/s41592-019-0686-2
[37]  van Rossum, G. (1995) Technical Report CS-R9526. Centrum voor Wiskunde en Informatica (CWI), Amsterdam .
[38]  Weinberg, S. (1972) Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York.
[39]  Glashow, G.L. (1961) Partial-Symmetries of Weak Interactions. Nuclear Physics, 22, 579-588.
https://doi.org/10.1016/0029-5582(61)90469-2
https://www.sciencedirect.com/science/article/pii/0029558261904692
[40]  Weinberg, S. (1967) A Model of Leptons, Physical Review Letters, 19, 1264-1266.
https://doi.org/10.1103/PhysRevLett.19.1264
https://link.aps.org/doi/10.1103/PhysRevLett.19.1264
[41]  Salam, A. (1980) Gauge Unification of Fundamental Forces. Reviews of Modern Physics, 52, 525-538.
https://doi.org/10.1103/RevModPhys.52.525
[42]  Englert, F., and Brout, R. (1964) Broken Symmetry and the Mass of Gauge Vector Mesons. Physical Review Letters, 13, 321-323.
https://doi.org/10.1103/PhysRevLett.13.321
[43]  Higgs, P. (1964) Broken Symmetries, Massless Particles and Gauge Fields. Physics Letters, 12, 132-133.
https://doi.org/10.1016/0031-9163(64)91136-9
[44]  Higgs, P. (1964) Broken Symmetries and the Masses of Gauge Bosons. Physical Review Letters, 13, 508-509.
https://doi.org/10.1103/PhysRevLett.13.508
[45]  Guralnik, G.S., Hagen, C.R. and Kibble, T.W.B. (1964) Global Conservation Laws and Massless Particles. Physical Review Letters, 13, 585-587.
https://doi.org/10.1103/PhysRevLett.13.585
[46]  Peebles, P.J.E. (1968) Recombination of the Primeval Plasma. The Astrophysical Journal, 153, 1-11.
https://doi.org/10.1086/149628
[47]  Datta, K.K., Kundu, A., Paul, A. and Bera, A. (2020) Cosmic Recombination History in Light of EDGES Measurements of the Cosmic Dawn 21-cm Signal. Physical Review D, 102, Article ID: 083502.
https://doi.org/10.1103/PhysRevD.102.083502
https://link.aps.org/doi/10.1103/PhysRevD.102.083502
[48]  Moss, A.G. and Narimani, A. and Scott, D. (2010) Let’s Talk about Varying G. International Journal of Modern Physics D, 19, 2289-2294.
https://doi.org/10.1142/S0218271810018396
[49]  Alvey, J. and Sabti, N. and Escudero, M. and Fairbairn, M. (2020) Improved BBN Constraints on the Variation of the Gravitational Constant. European Physical Journal C, 80, Article No. 148.
https://doi.org/10.1140/epjc/s10052-020-7727-y
[50]  Hanımeli, E.T. and Tutusaus, I. and Lamine, B. and Blanchard, A. (2020) Low-Redshift Tests of Newtonian Cosmologies with a Time-Varying Gravitational Constant. Monthly Notices of the Royal Astronomical Society, 497, 4407-4415.
https://doi.org/10.1093/mnras/staa2310

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133