Objectives: Exposing skin to moderate ionic osmotic stress (MIOS) triggers several biochemical responses. The objective of this work is to reveal the mechanism triggered by MIOS on the skin surface. Furthermore, this work aims to study the involvement of the Nrf2 (nuclear factor erythroid-2-related factor 2) pathway, activated by MIOS, and its beneficial effect in protecting skin against stress via the stimulation of phase II enzymes. Methods: HaCaT cells and human skin organ culture were exposed to Dead Sea Water (DSW) as MIOS inducers and the induction of internal ROS elevation, Nrf2 translocation, mRNA gene expressions of the phase II enzymes, heme-oxygenase 1 (HO1), and Catalase (CAT) were determined. Results: Skin exposure to MIOS increases Nrf2 translocation to the nucleus, leading to increased levels of ROS, HO1, and CAT. Furthermore, exposing skin to MIOS promotes protection against UVB-related risks. This is demonstrated by attenuation of the expression of biomarkers, related to UVB-induced damage, Caspase-3, IL-8, and IL-1β. Conclusions: Skin exposure to MIOS leads to the activation of Nrf2 skin defense pathway and, therefore, could present beneficial advantages to human skin health, as demonstrated on human skin models. The beneficial effects of MIOS, induced by DSW are significantly superior to eq. NaCl brine, suggests that MIOS protection of skin against stress is partially related to specific mineral combinations.
References
[1]
Ron-Doitch, S. and Kohen, R. (2020) The Cutaneous Physiological Redox: Essential to Maintain but Difficult to Define. Antioxidants, 9, Article No. 942. https://doi.org/10.3390/antiox9100942
[2]
Robles, T.F., Brooks, K.P. and Pressman, S.D. (2009) Trait Positive Affect Buffers the Effects of Acute Stress on Skin Barrier Recovery. Health Psychology, 28, 373-378. https://doi.org/10.1037/a0014662
[3]
Dreher, F. and Maibach, H. (2001) Protective Effects of Topical Antioxidants in Humans. Current Problems in Dermatology—Basel, 29, 157-164. https://doi.org/10.1159/000060664
[4]
Valacchi, G., Sticozzi, C., Pecorelli, A., Cervellati, F., Cervellati, C. and Maioli, E. (2012) Cutaneous Responses to Environmental Stressors. Annals of the New York Academy of Sciences, 1271, 75-81. https://doi.org/10.1111/j.1749-6632.2012.06724.x
[5]
Garmyn, M., Pupe, A., Mammone, T., Gan, D., Declercq, L. and Maes, D. (2001) Human Keratinocytes Respond to Osmotic Stress by p38 Map Kinase Regulated Induction of HSP70 and HSP27. Journal of Investigative Dermatology, 117, 1290-1295. https://doi.org/10.1046/j.0022-202x.2001.01553.x
[6]
Marsakova, A., Kudish, A., Gkalpakiotis, S., Jahn, I., Arenberger, P. and Harari, M. (2019) Dead Sea Climatotherapy versus Topical Steroid Treatment for Atopic Dermatitis Children: Long-Term Follow-Up Study. Journal of Dermatological Treatment, 31, 711-715. https://doi.org/10.1080/09546634.2019.1605138
[7]
Riyaz, N. and Arakkal, F.R. (2011) Spa Therapy in Dermatology. Indian Journal of Dermatology, Venereology, and Leprology, 77, 128-134. https://doi.org/10.4103/0378-6323.77450
[8]
Schempp, C.M., Dittmar, H.C., Hummler, D., Simon-Haarhaus, B., Schöpf, E., Simon, J.C., et al. (2000) Magnesium Ions Inhibit the Antigen-Presenting Function of Human Epidermal Langerhans Cells in Vivo and in Vitro. Involvement of ATPase, HLA-DR, B7 Molecules, and Cytokines. Journal of Investigative Dermatology, 115, 680-686. https://doi.org/10.1046/j.1523-1747.2000.00090.x
[9]
Carbajo, J.M. and Maraver, F. (2018) Salt Water and Skin Interactions: New Lines of Evidence. International Journal of Biometeorology, 62, 1345-1360. https://doi.org/10.1007/s00484-018-1545-z
[10]
Matz, H., Orion, E. and Wolf, R. (2003) Balneotherapy in Dermatology. Dermatologic Therapy, 16, 132-140. https://doi.org/10.1046/j.1529-8019.2003.01622.x
[11]
Shani, J., Sharon, R., Koren, R. and Even-Paz, Z. (1987) Effect of Dead-Sea Brine and Its Main Salts on Cell Growth in Culture. Pharmacology, 35, 339-347. https://doi.org/10.1159/000138359
[12]
Yosipovitch, G. and Fleischer, A.B. (2003) Itch Associated with Skin Disease. American Journal of Clinical Dermatology, 4, 617-622. https://doi.org/10.2165/00128071-200304090-00004
[13]
Levi-Schaffer, F., Shani, J., Politi, Y., Rubinchik, E. and Brenner, S. (1996) Inhibition of Proliferation of Psoriatic and Healthy Fibroblasts in Cell Culture by Selected Dead-Sea Salts. Pharmacology, 52, 321-328. https://doi.org/10.1159/000139397
[14]
Halevy, S. and Sukenik, S. (1998) Different Modalities of Spa Therapy for Skin Diseases at the Dead Sea Area. Archives of Dermatology, 134, 1416-1420. https://doi.org/10.1001/archderm.134.11.1416
[15]
Proksch, E., Nissen, H.P., Bremgartner, M. and Urquhart, C. (2005) Bathing in a Magnesium-Rich Dead Sea Salt Solution Improves Skin Barrier Function, Enhances Skin Hydration, and Reduces Inflammation in Atopic Dry Skin. International Journal of Dermatology, 44, 151-157. https://doi.org/10.1111/j.1365-4632.2005.02079.x
[16]
Betsholtz, C. and Westermark, B. (1984) Growth Factor-Induced Proliferation of Human Fibroblasts in Serum-Free Culture Depends on Cell Density and Extracellular Calcium Concentration. Journal of Cellular Physiology, 118, 203-210. https://doi.org/10.1002/jcp.1041180213
[17]
Kim, S.-K., Venkatesan, J. and Sudha, P. (2011) 19 Sea Water and Sea Mud. Marine Cosmeceuticals: Trends and Prospects, 100, 241. https://doi.org/10.1201/b10120-20
[18]
Kohen, R. and Nyska, A. (2002) Invited Review: Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. Toxicologic Pathology, 30, 620-650. https://doi.org/10.1080/01926230290166724
[19]
Koulbanis, C., Laugier, J.-P., Gagnebien-Cabanne, F. and Deprez, S. (1997) Cosmetic and/or Dermatological Composition Containing Thermal Spring Water or Mineral Water and an Active Agent, in Order to Combat Acne or Aging. Google Patents.
[20]
Harari, M. (2012) Beauty Is Not Only Skin Deep: The Dead Sea Features and Cosmetics. Anales de Hidrología Médica, 5, 75-88.
[21]
Harari, M. (2012) Climatotherapy of Skin Diseases at the Dead Sea—An Update. Anales de Hidrología Médica, 5, 39-51.
[22]
Even-Paz, Z., Gumon, R., Kipnis, V., Abels, D. and Efron, D. (1996) Dead Sea Sun versus Dead Sea Water in the Treatment of Psoriasis. Journal of Dermatological Treatment, 7, 83-86. https://doi.org/10.3109/09546639609089534
[23]
Lichtenberg, D. and Pinchuk, I. (2015) Oxidative Stress, the Term and the Concept. Biochemical and Biophysical Research Communications, 461, 441-444. https://doi.org/10.1016/j.bbrc.2015.04.062
[24]
Schröder, P. and Krutmann, J. (2005) Environmental Oxidative Stress—Environmental Sources of ROS. In: Grune, T., Ed., Reactions, Processes, Springer, Berlin, 19-31.
[25]
McCarthy, M.J., Baumber, J., Kass, P.H. and Meyers, S.A. (2010) Osmotic Stress Induces Oxidative Cell Damage to Rhesus Macaque Spermatozoa. Biology of Reproduction, 82, 644-651. https://doi.org/10.1095/biolreprod.109.080507
[26]
King, M.A., Clanton, T.L. and Laitano, O. (2016) Hyperthermia, Dehydration, and Osmotic Stress: Unconventional Sources of Exercise-Induced Reactive Oxygen Species. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 310, R105-R114. https://doi.org/10.1152/ajpregu.00395.2015
[27]
Kim, S., Agca, C. and Agca, Y. (2013) Effects of Various Physical Stress Factors on Mitochondrial Function and Reactive Oxygen Species in Rat Spermatozoa. Reproduction, Fertility and Development, 25, 1051-1064. https://doi.org/10.1071/RD12212
[28]
Poljsak, B., Šuput, D. and Milisav, I. (2013) Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxidative Medicine and Cellular Longevity, 2013, Article ID: 956792. https://doi.org/10.1155/2013/956792
[29]
Chang, S.-W., Lee, S.-I., Bae, W.-J., Min, K.-S., Shin, E.-S., Oh, G.-S., et al. (2009) Heat Stress Activates Interleukin-8 and the Antioxidant System via Nrf2 Pathways in Human Dental Pulp Cells. Journal of Endodontics, 35, 1222-1228. https://doi.org/10.1016/j.joen.2009.06.005
[30]
Knatko, E.V., Ibbotson, S.H., Zhang, Y., Higgins, M., Fahey, J.W., Talalay, P., et al. (2015) Nrf2 Activation Protects against Solar-Simulated Ultraviolet Radiation in Mice and Humans. Cancer Prevention Research, 8, 475-486. https://doi.org/10.1158/1940-6207.CAPR-14-0362
[31]
Baudouin, C., Charveron, M., Tarroux, R. and Gall, Y. (2002) Environmental Pollutants and Skin Cancer. Cell Biology and Toxicology, 18, 341-348. https://doi.org/10.1023/A:1019540316060
[32]
Zaitseva, N., Chechushkov, A., Kozhin, P., Lemza, A., Tkachev, V., Solomatina, M., et al. (2014) Effect of Highly Mineralized Natural Water on Redox Processes in HaCaT Keratinocytes. Bulletin of Experimental Biology and Medicine, 156, 810. https://doi.org/10.1007/s10517-014-2457-5
[33]
Portugal-Cohen, M., Soroka, Y., Ma’or, Z., Oron, M., Zioni, T., Brégégère, F.M., et al. (2009) Protective Effects of a Cream Containing Dead Sea Minerals against UVB-Induced Stress in Human Skin. Experimental Dermatology, 18, 781-788. https://doi.org/10.1111/j.1600-0625.2009.00865.x
[34]
Sivandzade, F., Bhalerao, A. and Cucullo, L. (2019) Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio-Protocol, 9, e3128. https://doi.org/10.21769/BioProtoc.3128
[35]
Pulli, I., Löf, C. and Törnquist, K. (2014) Utilizing Hidex Sense for Mitochondrial and Cytosolic Calcium Measurements Using the Luminescent Calcium Reporter Protein Aequorin and the Fluorescent Calcium Indicator Fura-2 AM. Hidex, Turku, 514-003.
[36]
Kraft, A.D., Johnson, D.A. and Johnson, J.A. (2004) Nuclear Factor E2-Related Factor 2-Dependent Antioxidant Response Element Activation by Tert-Butylhydroquinone and Sulforaphane Occurring Preferentially in Astrocytes Conditions Neurons against Oxidative Insult. Journal of Neuroscience, 24, 1101-1112. https://doi.org/10.1523/JNEUROSCI.3817-03.2004
[37]
Limonciel, A. and Jennings, P. (2014) A Review of the Evidence That Ochratoxin A Is an Nrf2 Inhibitor: Implications for Nephrotoxicity and Renal Carcinogenicity. Toxins, 6, 371-379. https://doi.org/10.3390/toxins6010371
[38]
Loboda, A., Stachurska, A., Sobczak, M., Podkalicka, P., Mucha, O., Jozkowicz, A., et al. (2017) Nrf2 Deficiency Exacerbates Ochratoxin A-Induced Toxicity in Vitro and in Vivo. Toxicology, 389, 42-52. https://doi.org/10.1016/j.tox.2017.07.004
[39]
Ramyaa, P. and Padma, V.V. (2013) Ochratoxin-Induced Toxicity, Oxidative Stress and Apoptosis Ameliorated by Quercetin-Modulation by Nrf2. Food and Chemical Toxicology, 62, 205-216. https://doi.org/10.1016/j.fct.2013.08.048
[40]
Cavin, C., Delatour, T., Marin-Kuan, M., Holzhäuser, D., Higgins, L., Bezencon, C., et al. (2007) Reduction in Antioxidant Defenses May Contribute to Ochratoxin A Toxicity and Carcinogenicity. Toxicological Sciences, 96, 30-39. https://doi.org/10.1093/toxsci/kfl169
[41]
Stachurska, A., Ciesla, M., Kozakowska, M., Wolffram, S., Boesch-Saadatmandi, C., Rimbach, G., et al. (2013) Cross-Talk between Micro RNAs, Nuclear Factor E 2-Related Factor 2, and Heme Oxygenase-1 in Ochratoxin A-Induced Toxic Effects in Renal Proximal Tubular Epithelial Cells. Molecular Nutrition & Food Research, 57, 504-515. https://doi.org/10.1002/mnfr.201200456
[42]
Greenwald, M.B.-Y., Frušić-Zlotkin, M., Soroka, Y., Ben-Sasson, S., Bianco-Peled, H. and Kohen, R. (2017) A Novel Role of Topical Iodine in Skin: Activation of the Nrf2 Pathway. Free Radical Biology and Medicine, 104, 238-248. https://doi.org/10.1016/j.freeradbiomed.2017.01.011
[43]
Goldstein, A., Soroka, Y., Frušić-Zlotkin, M., Lewis, A. and Kohen, R. (2016) The Bright Side of Plasmonic Gold Nanoparticles; Activation of Nrf2, the Cellular Protective Pathway. Nanoscale, 8, 11748-11759. https://doi.org/10.1039/C6NR02113A
[44]
Ron-Doitch, S., Soroka, Y., Frusic-Zlotkin, M., Barasch, D., Steinberg, D. and Kohen, R. (2020) Saturated and Aromatic Aldehydes Originating from Skin and Cutaneous Bacteria Activate the Nrf2-keap1 Pathway in Human Keratinocytes. Experimental Dermatology, 30, 1381-1387. https://doi.org/10.1111/exd.14103
[45]
Zhang, D.D. (2006) Mechanistic Studies of the Nrf2-Keap1 Signaling Pathway. Drug Metabolism Reviews, 38, 769-789. https://doi.org/10.1080/03602530600971974
[46]
Greenwald, M.B.Y., Anzi, S., Sasson, S.B., Bianco-Peled, H. and Kohen, R. (2014) Can Nitroxides Evoke the Keap1-Nrf2-ARE Pathway in Skin? Free Radical Biology and Medicine, 77, 258-269. https://doi.org/10.1016/j.freeradbiomed.2014.08.021
[47]
Görlach, A., Bertram, K., Hudecova, S. and Krizanova, O. (2015) Calcium and ROS: A Mutual Interplay. Redox Biology, 6, 260-271. https://doi.org/10.1016/j.redox.2015.08.010
[48]
Brookes, P.S., Yoon, Y., Robotham, J.L. anders, M. and Sheu, S.-S. (2004) Calcium, ATP, and ROS: A Mitochondrial Love-Hate Triangle. American Journal of Physiology-Cell Physiology, 287, C817-C833. https://doi.org/10.1152/ajpcell.00139.2004
[49]
Hann, S.-K. (1996) Mineral Water and Spas in Korea. Clinics in Dermatology, 14, 633-635. https://doi.org/10.1016/S0738-081X(96)00096-X
[50]
Ikehata, H. and Yamamoto, M. (2018) Roles of the KEAP1-NRF2 System in Mammalian Skin Exposed to UV Radiation. Toxicology and Applied Pharmacology, 360, 69-77. https://doi.org/10.1016/j.taap.2018.09.038
[51]
Ben-Yehuda Greenwald, M., Ben-Sasson, S., Bianco-Peled, H. and Kohen, R. (2016) Skin Redox Balance Maintenance: The Need for an Nrf2-Activator Delivery System. Cosmetics, 3, Article No. 1. https://doi.org/10.3390/cosmetics3010001
[52]
Cervellati, F., Woodby, B., Benedusi, M., Ferrara, F., Guiotto, A. and Valacchi, G. (2020) Evaluation of Oxidative Damage and Nrf2 Activation by Combined Pollution Exposure in Lung Epithelial Cells. Environmental Science and Pollution Research, 27, 31841-31853. https://doi.org/10.1007/s11356-020-09412-w
[53]
Natsch, A. (2010) The Nrf2-Keap1-ARE Toxicity Pathway as a Cellular Sensor for Skin Sensitizers—Functional Relevance and a Hypothesis on Innate Reactions to Skin Sensitizers. Toxicological Sciences, 113, 284-292. https://doi.org/10.1093/toxsci/kfp228
[54]
Bryan, H.K., Olayanju, A., Goldring, C.E. and Park, B.K. (2013) The Nrf2 Cell Defence Pathway: Keap1-Dependent and -Independent Mechanisms of Regulation. Biochemical Pharmacology, 85, 705-717. https://doi.org/10.1016/j.bcp.2012.11.016
[55]
Sassa, S. (2004) Why Heme Needs to Be Degraded to Iron, Biliverdin IXα, and Carbon Monoxide? Antioxidants & Redox Signaling, 6, 819-824. https://doi.org/10.1089/ars.2004.6.819
[56]
Rezvani, H., Cario-Andre, M., Pain, C., Ged, C., DeVerneuil, H. and Taieb, A. (2007) Protection of Normal Human Reconstructed Epidermis from UV by Catalase Overexpression. Cancer Gene Therapy, 14, 174-186. https://doi.org/10.1038/sj.cgt.7701000
[57]
Schallreuter, K.U., Moore, J., Behrens-Williams, S., Panske, A. and Harari, M. (2002) Rapid Initiation of Repigmentation in Vitiligo with Dead Sea Climatotherapy in Combination with Pseudocatalase (PC-KUS). International Journal of Dermatology, 41, 482-487. https://doi.org/10.1046/j.1365-4362.2002.01463.x
[58]
Portugal-Cohen, M., Cohen, D., Ish-Shalom, E., Laor-Costa, Y. and Ma’or, Z. (2019) Dead Sea Minerals: New Findings on Skin and the Biology beyond. Experimental Dermatology, 28, 585-592. https://doi.org/10.1111/exd.13918
[59]
Wardyn, J.D., Ponsford, A.H. and Sanderson, C.M. (2015) Dissecting Molecular Cross-Talk between Nrf2 and NF-κB Response Pathways. Biochemical Society Transactions, 43, 621-626. https://doi.org/10.1042/BST20150014
[60]
Li, W., Khor, T.O., Xu, C., Shen, G., Jeong, W.-S., Yu, S., et al. (2008) Activation of Nrf2-Antioxidant Signaling Attenuates NFκB-Inflammatory Response and Elicits Apoptosis. Biochemical Pharmacology, 76, 1485-1489. https://doi.org/10.1016/j.bcp.2008.07.017
[61]
Surh, Y.-J. and Na, H,-K. (2008) NF-κB and Nrf2 as Prime Molecular Targets for Chemoprevention and Cytoprotection with Anti-Inflammatory and Antioxidant Phytochemicals. Genes & Nutrition, 2, 313-317. https://doi.org/10.1007/s12263-007-0063-0
[62]
van der Veen, J.W., Paskel, R.F., Smits, N.A., Hodemaekers, H., van Loveren, H. and Ezendam, J. (2016) The Involvement of the Toll-Like Receptor Signaling and Nrf2-Keap1 Pathways in the in Vitro Regulation of IL-8 and HMOX1 for Skin Sensitization. Journal of Immunotoxicology, 13, 1-6. https://doi.org/10.3109/1547691X.2014.975897
[63]
Kawachi, Y., Xu, X., Taguchi, S., Sakurai, H., Nakamura, Y., Ishii, Y., et al. (2008) Attenuation of UVB-Induced Sunburn Reaction and Oxidative DNA Damage with No Alterations in UVB-Induced Skin Carcinogenesis in Nrf2 Gene-Deficient Mice. Journal of Investigative Dermatology, 128, 1773-1779. https://doi.org/10.1038/sj.jid.5701245
[64]
Liu, G.-H., Qu, J. and Shen, X. (2008) NF-κB/p65 Antagonizes Nrf2-ARE Pathway by Depriving CBP from Nrf2 and Facilitating Recruitment of HDAC3 to MafK. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1783, 713-727. https://doi.org/10.1016/j.bbamcr.2008.01.002
[65]
Li, W., Suwanwela, N.C. and Patumraj, S. (2016) Curcumin by Down-Regulating NF-kB and Elevating Nrf2, Reduces Brain Edema and Neurological Dysfunction after Cerebral I/R. Microvascular Research, 106, 117-127. https://doi.org/10.1016/j.mvr.2015.12.008
[66]
Bellezza, I., Giambanco, I., Minelli, A. and Donato, R. (2018) Nrf2-Keap1 Signaling in Oxidative and Reductive Stress. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1865, 721-733. https://doi.org/10.1016/j.bbamcr.2018.02.010
[67]
Gordeeva, A., Zvyagilskaya, R. and Labas, Y.A. (2003) Cross-Talk between Reactive Oxygen Species and Calcium in Living Cells. Biochemistry (Moscow), 68, 1077-1080. https://doi.org/10.1023/A:1026398310003
[68]
Goldman, R., Moshonov, S. and Zor, U. (1999) Calcium-Dependent PAF-Stimulated Generation of Reactive Oxygen Species in a Human Keratinocyte Cell Line. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1438, 349-358. https://doi.org/10.1016/S1388-1981(99)00066-9
[69]
Kakkar, P. and Singh, B. (2007) Mitochondria: A Hub of Redox Activities and Cellular Distress Control. Molecular and Cellular Biochemistry, 305, 235-253. https://doi.org/10.1007/s11010-007-9520-8
[70]
Masaki, H., Izutsu, Y., Yahagi, S. and Okano, Y. (2009) Reactive Oxygen Species in HaCaT Keratinocytes after UVB Irradiation Are Triggered by Intracellular Ca2+ Levels. Journal of Investigative Dermatology Symposium Proceedings, 14, 50-52. https://doi.org/10.1038/jidsymp.2009.12
[71]
Suski, J.M., Lebiedzinska, M., Bonora, M., Pinton, P., Duszynski, J. and Wieckowski, M.R. (2012) Relation between Mitochondrial Membrane Potential and ROS Formation. In: Mitochondrial Bioenergetics, Springer, Berlin, 183-205. https://doi.org/10.1007/978-1-61779-382-0_12
[72]
Sanderson, T.H., Reynolds, C.A., Kumar, R., Przyklenk, K. and Hüttemann, M. (2013) Molecular Mechanisms of Ischemia-Reperfusion Injury in Brain: Pivotal Role of the Mitochondrial Membrane Potential in Reactive Oxygen Species Generation. Molecular Neurobiology, 47, 9-23. https://doi.org/10.1007/s12035-012-8344-z
[73]
Portugal-Cohen, M., Dominguez, M.F., Oron, M. and Holtz, R. (2015) Dead Sea Minerals-Induced Positive Stress as an Innovative Resource for Skincare Actives. Journal of Cosmetics, Dermatological Sciences and Applications, 5, 22-35. https://doi.org/10.4236/jcdsa.2015.51004