全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2022 

骨组织工程应用中基于壳聚糖水凝胶的研究进展
Research Progress of Chitosan-Based Hydrogels for Bone Tissue Engineering Applications

DOI: 10.12677/BP.2022.122014, PP. 124-130

Keywords: 细胞外基质,水凝胶,壳聚糖,骨组织工程
Extracellular Matrix
, Hydrogel, Chitosan, Bone Tissue Engineering

Full-Text   Cite this paper   Add to My Lib

Abstract:

人体骨组织中包含各种细胞、蛋白和细胞外基质,其中细胞外基质是由各种生物大分子相互交联而成的聚合网状结构。水凝胶指由聚合物或者胶体分子紧密交联从而形成的三维网状结构,是具有较高吸水能力、亲水性能的聚合材料,水凝胶的结构与细胞外基质高度相似而被广泛应用于生物医学领域。近年来,已经在诱导血管生成、软骨组织重建和人工合成骨材料移植等方面取得了重大进展。壳聚糖作为一种由甲壳素经过脱乙酰化生成的聚合物分子,是自然界中唯一存在的具有聚阳离子的弱碱性多糖。壳聚糖水凝胶材料在骨组织工程的应用中受到了广泛关注,因为它具有良好的抗菌性、生物相容性、生物降解性,并且能够作为小分子药物的载体,对目标区域起到缓释作用。在最近的研究中,通过引入其他分子或对天然壳聚糖改性从而构建温度响应、光响应和pH响应壳聚糖水凝胶。本文综述了骨组织工程应用中不同类型的壳聚糖水凝胶材料。
Human bone tissue contains various cells, proteins and extracellular matrix, wherein the extracellular matrix is a polymeric network structure formed by cross-linking of various biological macromolecules. Hydrogel refers to a three-dimensional network structure formed by the close cross-linking of polymers or colloidal molecules. It is a polymeric material with high water absorption and hydrophilic properties. The structure of hydrogel is highly similar to the extracellular matrix and is widely used in the field of biomedicine. In recent years, significant progress has been made in the induction of angiogenesis, cartilage tissue reconstruction, and implantation of synthetic bone materials. Chitosan, as a polymer molecule produced by deacetylation of chitin, is the only weakly basic polysaccharide with polycation in nature. Chitosan hydrogel materials have received extensive attention in the application of bone tissue engineering because of their good antibacterial properties, biocompatibility, and biodegradability. It can be used as a carrier of small molecule drugs and has a slow release effect on the target area. In recent studies, temperature-responsive, light-responsive and pH-responsive chitosan hydrogels were constructed by introducing other molecules or modifying natural chitosan. This article reviews different types of chitosan hydrogel materials for bone tissue engineering applications.

References

[1]  方娟. 不同力学环境导致宏微观骨结构变化的数值模拟及多尺度实验研究[D]: [博士学位论文]. 长春: 吉林大学, 2016.
[2]  王洪复. 骨的结构、功能及转换[J]. 实用妇产科杂志, 1995(5): 227-229.
[3]  张丽丽. 浓缩生长因子对兔骨膜来源细胞增殖、成骨分化及成血管潜能的研究[D]: [博士学位论文]. 沈阳: 中国医科大学, 2019.
[4]  Teti, A. (2011) Bone Development: Overview of Bone Cells and Signaling. Current Osteoporosis Reports, 9, 264-273.
https://doi.org/10.1007/s11914-011-0078-8
[5]  武文霞, 于同慧, 朱祎, 王庆玲, 卢士玲, 刘成江, 董娟. 骨胶原蛋白的制备及其在食品中应用的研究进展[J/OL]. 食品工业科技, 2022, 43(13): 1-10.
http://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2021070289, 2021-11-03.
[6]  Wear, K.A. (2008) Ultrasonic Scattering from Cancellous Bone: A Review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-quency Control, 55, 1432-1441.
https://doi.org/10.1109/TUFFC.2008.818
[7]  李沛雨, 许述财, 杜雯菁, 李浩, 张金换. 中国人肋骨密质骨厚度的测定与特征分析[J]. 清华大学学报(自然科学版), 2017, 57(8): 815-820+831.
[8]  Teotia, A.K., Qayoom, I., Singh, P., Mishra, A., Jaiman, D., Sepp?l?, J., Lidgren, L. and Kumar, A. (2021) Exosome-Functionalized Ceramic Bone Substitute Promotes Critical-Sized Bone Defect Repair in Rats. ACS Ap-plied Bio Materials, 4, 3716-3726.
https://doi.org/10.1021/acsabm.1c00311
[9]  杨小彬. 同种异体骨复合带血管自体骨移植修复大段骨缺损的实验研究[D]: [硕士学位论文]. 西安: 第四军医大学, 2009.
[10]  Venkatesan, J. and Kim, S.K. (2010) Chitosan Composites for Bone Tissue Engineering—An Overview. Marine Drugs, 8, 2252-2266.
https://doi.org/10.3390/md8082252
[11]  王思棋. 响应性高强度水凝胶的制备、结构及性能探究[D]: [硕士学位论文]. 长春: 长春工业大学, 2021.
[12]  Zhang, Y., Yu, T., Peng, L., Sun, Q., Wei, Y. and Han, B. (2020) Ad-vancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering. Frontiers in Pharmacol-ogy, 11, Article No. 622.
https://doi.org/10.3389/fphar.2020.00622
[13]  夏莉. 具有大幅度双向弯曲性能的双层水凝胶柔性执行器的研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2021.
[14]  Huang, H., Qi, X., Chen, Y. and Wu, Z. (2019) Ther-mo-Sensitive Hydrogels for Delivering Biotherapeutic Molecules: A Review. Saudi Pharmaceutical Journal, 27, 990-999.
https://doi.org/10.1016/j.jsps.2019.08.001
[15]  Dhand, A.P., Galarraga, J.H. and Burdick, J.A. (2021) Enhancing Biopolymer Hydrogel Functionality through Interpenetrating Networks. Trends in Biotechnology, 39, 519-538.
https://doi.org/10.1016/j.tibtech.2020.08.007
[16]  苏雨. 携载PEG-PLA纳米粒子的壳聚糖水凝胶局部递送miR-146a在变应性鼻炎中的应用[D]: [硕士学位论文]. 长春: 吉林大学, 2021.
[17]  Cheng, W., Ding, Z., Zheng, X., Lu, Q., Kong, X., Zhou, X., Lu, G. and Kaplan, D.L. (2020) Injectable Hydrogel Systems with Multiple Biophysical and Biochemical Cues for Bone Regeneration. Biomaterials Science, 8, 2537-2548.
https://doi.org/10.1039/D0BM00104J
[18]  Dhivya, S., Saravanan, S., Sastry, T.P. and Selvamurugan, N. (2015) Nanohydroxyapatite-Reinforced Chitosan Composite Hydrogel for Bone Tissue Repair in Vitro and in Vivo. Journal of Nanobiotechnology, 13, 40.
https://doi.org/10.1186/s12951-015-0099-z
[19]  Wang, L. and Stegemann, J.P. (2010) Thermogelling Chitosan and Collagen Composite Hydrogels Initiated with β-Glycerophosphate for Bone Tissue Engineering. Biomaterials, 31, 3976-3985.
https://doi.org/10.1016/j.biomaterials.2010.01.131
[20]  Taymouri, S., Amirkhani, S. and Mirian, M. (2021) Fabri-cation and Characterization of Injectable Thermosensitive Hydrogel Containing Dipyridamole Loaded Polycaprolactone Nanoparticles for Bone Tissue Engineering. Journal of Drug Delivery Science and Technology, 64, Article ID: 102659.
https://doi.org/10.1016/j.jddst.2021.102659
[21]  Pankongadisak, P. and Suwantong, O. (2018) The Potential Use of Thermosensitive Chitosan/Silk Sericin Hydrogels Loaded with Longan Seed Extract for Bone Tissue Engineering. RSC Advances, 8, 40219-40231.
https://doi.org/10.1039/C8RA07255H
[22]  王笑. 新型功能修饰壳聚糖衍生化水凝胶合成制备及性能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2020.
[23]  金慧. 糖肽可注射水凝胶的制备及骨修复应用[D]: [硕士学位论文]. 无锡: 江南大学, 2021.
[24]  Rogina, A., Ressler, A., Mati?, I., Ferrer, G.G., Marijanovi?, I., Ivankovi?, M. and Ivankovi?, H. (2017) Cellular Hydrogels Based on pH-Responsive Chitosan-Hydroxyapatite System. Carbohy-drate Polymers, 166, 173-182.
https://doi.org/10.1016/j.carbpol.2017.02.105
[25]  Zhao, C., Qazvini, N.T., Sadati, M., Zeng, Z., Huang, S., De La Lastra, A.L. and He, T.C. (2019) A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. ACS Applied Materials & Interfaces, 11, 8749-8762.
https://doi.org/10.1021/acsami.8b19094
[26]  徐飞扬. 壳聚糖基水凝胶材料的制备及其基础应用研究[D]: [硕士学位论文]. 武汉: 武汉纺织大学, 2021.
[27]  熊文说. 水溶性壳聚糖衍生物的合成、表征及其作为医用材料评价的研究[D]: [博士学位论文]. 杭州: 浙江工业大学, 2011.
[28]  白雪. 3D打印多孔钛表面复合载药壳聚糖水凝胶涂层构建及其抑菌效果的研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2020.
[29]  Li, B., Wang, L., Hao, Y., Wei, D., Li, Y., Feng, Y., Jia, D. and Zhou, Y. (2015) Ultraviolet-Crosslinkable and Injectable Chitosan/Hydroxyapatite Hybrid Hydrogel for Critical Size Calvarial Defect Repair in Vivo. Journal of Nanotechnology in Engineering and Medi-cine, 6, Article ID: 041001.
https://doi.org/10.1115/1.4032902
[30]  Yoon, S.J., Yoo, Y., Nam, S.E., Hyun, H., Lee, D.W., Um, S., Kim, S.Y., Hong, S.Y., Yong, D.H. and Chun, H.J. (2018) The Cocktail Effect of BMP-2 and TGF-β1 Loaded in Visible Light-Cured Glycol Chitosan Hydrogels for the Enhancement of Bone Formation in a Rat Tibial Defect Model. Marine Drugs, 16, Article No. 351.
https://doi.org/10.3390/md16100351
[31]  Maharjan, B., Park, J., Kaliannagounder, V.K., Awasthi, G.P., Joshi, M.K., Park, C.H. and Kim, C.S. (2021) Regenerated Cellulose Nanofiber Reinforced Chitosan Hydrogel Scaffolds for Bone Tissue Engineering. Carbohydrate Polymers, 251, Article ID: 117023.
https://doi.org/10.1016/j.carbpol.2020.117023
[32]  Bi, S., Wang, P., Hu, S., Li, S., Pang, J., Zhou, Z., Sun, G., Huang, L., Cheng, X., Xing, S. and Chen, X. (2019) Construction of Physical-Crosslink Chitosan/PVA Dou-ble-Network Hydrogel with Surface Mineralization for Bone Repair. Carbohydrate Polymers, 224, Article ID: 115176.
https://doi.org/10.1016/j.carbpol.2019.115176
[33]  Peng, L., Zhou, Y., Lu, W., Zhu, W., Li, Y., Chen, K., Zhang, G. and Wang, D. (2019) Characterization of a Novel Polyvinyl Alcohol/Chitosan Porous Hydrogel Combined with Bone Marrow Mesenchymal Stem Cells and Its Application in Articular Cartilage Repair. BMC Musculoskeletal Disorders, 20, Article No. 257.
https://doi.org/10.1186/s12891-019-2644-7
[34]  Meng, Q., Man, Z., Dai, L., Huang, H., Zhang, X., Hu, X., Shao, Z., Zhu, J., Zhang, J., Fu, X., Duan, X. and Ao, Y. (2015) A Composite Scaffold of MSC Affinity Peptide-Modified Demineralized Bone Matrix Particles and Chitosan Hydrogel for Cartilage Regeneration. Scientific Reports, 5, Article No. 17802.
https://doi.org/10.1038/srep17802
[35]  Nandi, S.K., Kundu, B. and Basu, D. (2013) Protein Growth Fac-tors Loaded Highly Porous Chitosan Scaffold: A Comparison of Bone Healing Properties. Materials Science and Engi-neering: C, 33, 1267-1275.
https://doi.org/10.1016/j.msec.2012.12.025

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133