|
Bioprocess 2022
骨组织工程应用中基于壳聚糖水凝胶的研究进展
|
Abstract:
[1] | 方娟. 不同力学环境导致宏微观骨结构变化的数值模拟及多尺度实验研究[D]: [博士学位论文]. 长春: 吉林大学, 2016. |
[2] | 王洪复. 骨的结构、功能及转换[J]. 实用妇产科杂志, 1995(5): 227-229. |
[3] | 张丽丽. 浓缩生长因子对兔骨膜来源细胞增殖、成骨分化及成血管潜能的研究[D]: [博士学位论文]. 沈阳: 中国医科大学, 2019. |
[4] | Teti, A. (2011) Bone Development: Overview of Bone Cells and Signaling. Current Osteoporosis Reports, 9, 264-273.
https://doi.org/10.1007/s11914-011-0078-8 |
[5] | 武文霞, 于同慧, 朱祎, 王庆玲, 卢士玲, 刘成江, 董娟. 骨胶原蛋白的制备及其在食品中应用的研究进展[J/OL]. 食品工业科技, 2022, 43(13): 1-10. http://www.spgykj.com/article/doi/10.13386/j.issn1002-0306.2021070289, 2021-11-03. |
[6] | Wear, K.A. (2008) Ultrasonic Scattering from Cancellous Bone: A Review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-quency Control, 55, 1432-1441. https://doi.org/10.1109/TUFFC.2008.818 |
[7] | 李沛雨, 许述财, 杜雯菁, 李浩, 张金换. 中国人肋骨密质骨厚度的测定与特征分析[J]. 清华大学学报(自然科学版), 2017, 57(8): 815-820+831. |
[8] | Teotia, A.K., Qayoom, I., Singh, P., Mishra, A., Jaiman, D., Sepp?l?, J., Lidgren, L. and Kumar, A. (2021) Exosome-Functionalized Ceramic Bone Substitute Promotes Critical-Sized Bone Defect Repair in Rats. ACS Ap-plied Bio Materials, 4, 3716-3726. https://doi.org/10.1021/acsabm.1c00311 |
[9] | 杨小彬. 同种异体骨复合带血管自体骨移植修复大段骨缺损的实验研究[D]: [硕士学位论文]. 西安: 第四军医大学, 2009. |
[10] | Venkatesan, J. and Kim, S.K. (2010) Chitosan Composites for Bone Tissue Engineering—An Overview. Marine Drugs, 8, 2252-2266. https://doi.org/10.3390/md8082252 |
[11] | 王思棋. 响应性高强度水凝胶的制备、结构及性能探究[D]: [硕士学位论文]. 长春: 长春工业大学, 2021. |
[12] | Zhang, Y., Yu, T., Peng, L., Sun, Q., Wei, Y. and Han, B. (2020) Ad-vancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering. Frontiers in Pharmacol-ogy, 11, Article No. 622.
https://doi.org/10.3389/fphar.2020.00622 |
[13] | 夏莉. 具有大幅度双向弯曲性能的双层水凝胶柔性执行器的研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2021. |
[14] | Huang, H., Qi, X., Chen, Y. and Wu, Z. (2019) Ther-mo-Sensitive Hydrogels for Delivering Biotherapeutic Molecules: A Review. Saudi Pharmaceutical Journal, 27, 990-999. https://doi.org/10.1016/j.jsps.2019.08.001 |
[15] | Dhand, A.P., Galarraga, J.H. and Burdick, J.A. (2021) Enhancing Biopolymer Hydrogel Functionality through Interpenetrating Networks. Trends in Biotechnology, 39, 519-538. https://doi.org/10.1016/j.tibtech.2020.08.007 |
[16] | 苏雨. 携载PEG-PLA纳米粒子的壳聚糖水凝胶局部递送miR-146a在变应性鼻炎中的应用[D]: [硕士学位论文]. 长春: 吉林大学, 2021. |
[17] | Cheng, W., Ding, Z., Zheng, X., Lu, Q., Kong, X., Zhou, X., Lu, G. and Kaplan, D.L. (2020) Injectable Hydrogel Systems with Multiple Biophysical and Biochemical Cues for Bone Regeneration. Biomaterials Science, 8, 2537-2548.
https://doi.org/10.1039/D0BM00104J |
[18] | Dhivya, S., Saravanan, S., Sastry, T.P. and Selvamurugan, N. (2015) Nanohydroxyapatite-Reinforced Chitosan Composite Hydrogel for Bone Tissue Repair in Vitro and in Vivo. Journal of Nanobiotechnology, 13, 40.
https://doi.org/10.1186/s12951-015-0099-z |
[19] | Wang, L. and Stegemann, J.P. (2010) Thermogelling Chitosan and Collagen Composite Hydrogels Initiated with β-Glycerophosphate for Bone Tissue Engineering. Biomaterials, 31, 3976-3985.
https://doi.org/10.1016/j.biomaterials.2010.01.131 |
[20] | Taymouri, S., Amirkhani, S. and Mirian, M. (2021) Fabri-cation and Characterization of Injectable Thermosensitive Hydrogel Containing Dipyridamole Loaded Polycaprolactone Nanoparticles for Bone Tissue Engineering. Journal of Drug Delivery Science and Technology, 64, Article ID: 102659. https://doi.org/10.1016/j.jddst.2021.102659 |
[21] | Pankongadisak, P. and Suwantong, O. (2018) The Potential Use of Thermosensitive Chitosan/Silk Sericin Hydrogels Loaded with Longan Seed Extract for Bone Tissue Engineering. RSC Advances, 8, 40219-40231.
https://doi.org/10.1039/C8RA07255H |
[22] | 王笑. 新型功能修饰壳聚糖衍生化水凝胶合成制备及性能研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2020. |
[23] | 金慧. 糖肽可注射水凝胶的制备及骨修复应用[D]: [硕士学位论文]. 无锡: 江南大学, 2021. |
[24] | Rogina, A., Ressler, A., Mati?, I., Ferrer, G.G., Marijanovi?, I., Ivankovi?, M. and Ivankovi?, H. (2017) Cellular Hydrogels Based on pH-Responsive Chitosan-Hydroxyapatite System. Carbohy-drate Polymers, 166, 173-182.
https://doi.org/10.1016/j.carbpol.2017.02.105 |
[25] | Zhao, C., Qazvini, N.T., Sadati, M., Zeng, Z., Huang, S., De La Lastra, A.L. and He, T.C. (2019) A pH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for Mesenchymal Stem Cell Based Bone Tissue Engineering. ACS Applied Materials & Interfaces, 11, 8749-8762. https://doi.org/10.1021/acsami.8b19094 |
[26] | 徐飞扬. 壳聚糖基水凝胶材料的制备及其基础应用研究[D]: [硕士学位论文]. 武汉: 武汉纺织大学, 2021. |
[27] | 熊文说. 水溶性壳聚糖衍生物的合成、表征及其作为医用材料评价的研究[D]: [博士学位论文]. 杭州: 浙江工业大学, 2011. |
[28] | 白雪. 3D打印多孔钛表面复合载药壳聚糖水凝胶涂层构建及其抑菌效果的研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2020. |
[29] | Li, B., Wang, L., Hao, Y., Wei, D., Li, Y., Feng, Y., Jia, D. and Zhou, Y. (2015) Ultraviolet-Crosslinkable and Injectable Chitosan/Hydroxyapatite Hybrid Hydrogel for Critical Size Calvarial Defect Repair in Vivo. Journal of Nanotechnology in Engineering and Medi-cine, 6, Article ID: 041001. https://doi.org/10.1115/1.4032902 |
[30] | Yoon, S.J., Yoo, Y., Nam, S.E., Hyun, H., Lee, D.W., Um, S., Kim, S.Y., Hong, S.Y., Yong, D.H. and Chun, H.J. (2018) The Cocktail Effect of BMP-2 and TGF-β1 Loaded in Visible Light-Cured Glycol Chitosan Hydrogels for the Enhancement of Bone Formation in a Rat Tibial Defect Model. Marine Drugs, 16, Article No. 351.
https://doi.org/10.3390/md16100351 |
[31] | Maharjan, B., Park, J., Kaliannagounder, V.K., Awasthi, G.P., Joshi, M.K., Park, C.H. and Kim, C.S. (2021) Regenerated Cellulose Nanofiber Reinforced Chitosan Hydrogel Scaffolds for Bone Tissue Engineering. Carbohydrate Polymers, 251, Article ID: 117023. https://doi.org/10.1016/j.carbpol.2020.117023 |
[32] | Bi, S., Wang, P., Hu, S., Li, S., Pang, J., Zhou, Z., Sun, G., Huang, L., Cheng, X., Xing, S. and Chen, X. (2019) Construction of Physical-Crosslink Chitosan/PVA Dou-ble-Network Hydrogel with Surface Mineralization for Bone Repair. Carbohydrate Polymers, 224, Article ID: 115176. https://doi.org/10.1016/j.carbpol.2019.115176 |
[33] | Peng, L., Zhou, Y., Lu, W., Zhu, W., Li, Y., Chen, K., Zhang, G. and Wang, D. (2019) Characterization of a Novel Polyvinyl Alcohol/Chitosan Porous Hydrogel Combined with Bone Marrow Mesenchymal Stem Cells and Its Application in Articular Cartilage Repair. BMC Musculoskeletal Disorders, 20, Article No. 257.
https://doi.org/10.1186/s12891-019-2644-7 |
[34] | Meng, Q., Man, Z., Dai, L., Huang, H., Zhang, X., Hu, X., Shao, Z., Zhu, J., Zhang, J., Fu, X., Duan, X. and Ao, Y. (2015) A Composite Scaffold of MSC Affinity Peptide-Modified Demineralized Bone Matrix Particles and Chitosan Hydrogel for Cartilage Regeneration. Scientific Reports, 5, Article No. 17802. https://doi.org/10.1038/srep17802 |
[35] | Nandi, S.K., Kundu, B. and Basu, D. (2013) Protein Growth Fac-tors Loaded Highly Porous Chitosan Scaffold: A Comparison of Bone Healing Properties. Materials Science and Engi-neering: C, 33, 1267-1275.
https://doi.org/10.1016/j.msec.2012.12.025 |