|
硫酸软骨素生物学功能及其在疾病治疗中的作用
|
Abstract:
硫酸软骨素(chondroitin sulfate)是天然存在的酸性粘多糖,具有免疫调节、促进伤口愈合、抗病毒作用、抗氧化及调控肿瘤生长等多种药理和生物学活性,并已被广泛用于治疗炎症相关性疾病。此外,还可以作为生物材料应用于医学领域,本综述总结了硫酸软骨素的各种生物学功能及其在疾病治疗中的作用,为进一步临床应用提供了参考。
Chondroitin sulfate is a naturally acidic mucopolysaccharide. It has various pharmacological effects and biological activities, such as immunomodulation, promotion of wound healing, antiviral effect, antioxidant and tumor growth regulation. It has been widely used in the treatment of inflammation related diseases. In addition, it can also be used as a biomaterial in the medical field. This review summarizes the various biological functions of chondroitin sulfate and its role in disease treatment, providing a reference for further clinical applications.
[1] | Hatano, S. and Watanabe, H. (2020) Regulation of Macrophage and Dendritic Cell Function by Chondroitin Sulfate in Innate to Antigen-Specific Adaptive Immunity. Frontiers in Immunology, 11, Article No. 232.
https://doi.org/10.3389/fimmu.2020.00232 |
[2] | du Souich, P., García, A.G., Vergés, J., et al. (2009) Immunomod-ulatory and Anti-Inflammatory Effects of Chondroitin Sulphate. Journal of Cellular and Molecular Medicine, 13, 1451-1463.
https://doi.org/10.1111/j.1582-4934.2009.00826.x |
[3] | Taraballi, F., Corradetti, B., Minardi, S., et al. (2016) Bio-mimetic collagenous Scaffold to Tune Inflammation by Targeting Macrophages. Journal of Tissue Engineering, 7. https://doi.org/10.1177/2041731415624667 |
[4] | Danacioglu, Y.O., Erol, B., Ozkanli, S., et al. (2021) Comparison of Intravesical Hyaluronic Acid, Chondroitin Sulfate, and Combination of Hyaluronic Acid-Chondroitin Sulfate Thera-pies in Animal Model of Interstitial Cystitis. International Neurourology Journal, 25, 42-50. https://doi.org/10.5213/inj.1938176.088 |
[5] | Sun, Y., Zhang, G., Liu, Q., et al. (2018) Chondroitin Sulfate from Sturgeon Bone Ameliorates Pain of Osteoarthritis Induced by Monosodium Iodoacetate in Rats. International Journal of Biological Macromolecules, 117, 95-101.
https://doi.org/10.1016/j.ijbiomac.2018.05.124 |
[6] | Ca?as, N., Gorina, R., Planas, A.M., et al. (2010) Chondroitin Sulfate Inhibits Lipopolysaccharide-Induced Inflammation in Rat Astrocytes by Preventing Nuclear Factor Kappa B Ac-tivation. Neuroscience, 167, 872-879.
https://doi.org/10.1016/j.neuroscience.2010.02.069 |
[7] | da Cunha, A.L., Aguiar, J.A.K., Correa da Silva, F.S., et al. (2017) Do Chondroitin Sulfates with Different Structures Have Different Activities on Chondrocytes and Macrophages? International Journal of Biological Macromolecules, 103, 1019-1031. https://doi.org/10.1016/j.ijbiomac.2017.05.123 |
[8] | Gilbert, M.E., Kirker, K.R., Gray, S.D., et al. (2004) Chon-droitin Sulfate Hydrogel and Wound Healing in Rabbit Maxillary Sinus Mucosa. The Laryngoscope, 114, 1406-1409. https://doi.org/10.1097/00005537-200408000-00017 |
[9] | Maksimenko, A.V., Golubykh, V.L. and Tischenko, E.G. (2003) Catalase and Chondroitin Sulfate Derivatives against Thrombotic Effect Induced by Reactive Oxygen Spe-cies in a Rat Artery. Metabolic Engineering, 5, 177-182.
https://doi.org/10.1016/S1096-7176(03)00026-0 |
[10] | Wu, R., Shang, N., Gui, M., et al. (2020) Sturgeon (Acipenser)-Derived Chondroitin Sulfate Suppresses Human Colon Cancer HCT-116 Both in Vitro and in Vivo by Inhib-iting Proliferation and Inducing Apoptosis. Nutrients, 12, 1130.
https://doi.org/10.3390/nu12041130 |
[11] | Pude?ko, A., Wisowski, G., Olczyk, K., et al. (2019) The Dual Role of the Glycosaminoglycan Chondroitin-6-Sulfate in the Development, Progression and Metastasis of Cancer. The FEBS Journal, 286, 1815-1837.
https://doi.org/10.1111/febs.14748 |
[12] | Wojdasiewicz, P., Poniatowski, ?.A. and Szukiewicz, D. (2014) The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis. Mediators of Inflammation, 2014, Article ID: 561459.
https://doi.org/10.1155/2014/561459 |
[13] | Hochberg, M.C., Martel-Pelletier, J., Monfort, J., et al. (2016) Combined Chondroitin Sulfate and Glucosamine for Painful Knee Osteoarthritis: A Multicentre, Randomised, Double-Blind, Non-Inferiority Trial versus Celecoxib. Annals of the Rheumatic Diseases, 75, 37-44. https://doi.org/10.1136/annrheumdis-2014-206792 |
[14] | Avirutnan, P., Zhang, L., Punyadee, N., et al. (2007) Se-creted NS1 of Dengue Virus Attaches to the Surface of Cells via Interactions with Heparan Sulfate and Chondroitin Sul-fate E. PLOS Pathogens, 3, e183.
https://doi.org/10.1371/journal.ppat.0030183 |
[15] | Zou, Z., Wei, M., Fang, J., et al. (2020) Preparation of Chon-droitin Sulfates with Different Molecular Weights from Bovine Nasal Cartilage and Their Antioxidant Activities. Interna-tional Journal of Biological Macromolecules, 152, 1047-1055. https://doi.org/10.1016/j.ijbiomac.2019.10.192 |
[16] | Bauerova, K., Ponist, S., Kuncirova, V., et al. (2011) Chon-droitin Sulfate Effect on Induced Arthritis in Rats. Osteoarthritis and Cartilage, 19, 1373-1379. https://doi.org/10.1016/j.joca.2011.08.006 |
[17] | Zou, X.H., Foong, W.C., Cao, T., et al. (2004) Chondroitin Sulfate in Palatal Wound Healing. Journal of Dental Research, 83, 880-885. https://doi.org/10.1177/154405910408301111 |
[18] | Zhu, W., Iqbal, J. and Wang, D. (2019) A DOPA-Functionalized Chondroitin Sulfate-Based Adhesive Hydrogel as a Promising Multi-Functional Bioadhesive. Journal of Materials Chemistry, 7, 1741-1752.
https://doi.org/10.1039/C8TB01990H |
[19] | Lin, K. and Kasko, A.M. (2014) Carbohydrate-Based Polymers for Immune Modulation. ACS Macro Letters, 3, 652-657. https://doi.org/10.1021/mz5002417 |
[20] | Lee, J.Y., Lee, H.S., Kang, N.W., et al. (2020) Blood Component Ridable and CD44 Receptor Targetable Nanoparticles Based on a Malei-mide-Functionalized Chondroitin Sulfate Derivative. Carbohydrate Polymers, 230, Article ID: 115568. https://doi.org/10.1016/j.carbpol.2019.115568 |
[21] | Yang, J., Jiang, S., Guan, Y., et al. (2019) Pancreatic Islet Sur-face Engineering with a starPEG-Chondroitin Sulfate Nanocoating. Biomaterials Science, 7, 2308-2316. https://doi.org/10.1039/C9BM00061E |
[22] | Zhu, Y., Peng, X., Zhang, Y., et al. (2021) Baicalein Protects against Aspergillus fumigatus Keratitis by Reducing Fungal Load and Inhibiting TSLP-Induced Inflammatory Response. Inves-tigative Ophthalmology & Visual Science, 62, 26. https://doi.org/10.1167/iovs.62.6.26 |
[23] | Vallières, M. and du Souich, P. (2010) Modulation of Inflammation by Chondroitin Sulfate. Osteoarthritis and Cartilage, 18, S1-S6. https://doi.org/10.1016/j.joca.2010.02.017 |
[24] | Iovu, M., Dumais, G. and du Souich, P. (2008) Anti-Inflammatory Activity of Chondroitin Sulfate. Osteoarthritis and Cartilage, 16, S14-S18. https://doi.org/10.1016/j.joca.2008.06.008 |
[25] | Jomphe, C., Gabriac, M., Hale, T.M., et al. (2008) Chondroitin Sulfate Inhibits the Nuclear Translocation of Nuclear Factor-κB in Interleukin-1beta-Stimulated Chondrocytes. Basic & Clinical Pharmacology & Toxicology, 102, 59-65. |
[26] | Korotkyi, O., Vovk, A., Blokhina, O., et al. (2019) Effect of Chondroitin Sulfate on Blood Serum Cytokine Profile during Carrageenan-Induced Edema and Monoiodoacetate-Induced Osteoarthritis in Rats. Reviews on Recent Clinical Trials, 14, 50-55. https://doi.org/10.2174/1574887113666181102111247 |
[27] | Omata, T., Itokazu, Y., Inoue, N., et al. (2000) Effects of Chondroitin Sulfate-C on Articular Cartilage Destruction in Murine Collagen-Induced Arthritis. Arzneimit-tel-Forschung, 50, 148-153. https://doi.org/10.1055/s-0031-1300180 |
[28] | Campo, G.M., Avenoso, A., Campo, S., et al. (2009) Glycosaminoglycans Reduced Inflammatory Response by Modulating Toll-Like Receptor-4 in LPS-Stimulated Chondrocytes. Archives of Biochemistry and Biophysics, 491, 7-15.
https://doi.org/10.1016/j.abb.2009.09.017 |
[29] | Stabler, T.V., Huang, Z., Montell, E., et al. (2017) Chondroitin Sulphate Inhibits NF-κB Activity Induced by Interaction of Pathogenic and Damage Associated Molecules. Osteoarthri-tis and Cartilage, 25, 166-174.
https://doi.org/10.1016/j.joca.2016.08.012 |
[30] | Sakai, S., Akiyama, H., Sato, Y., et al. (2006) Chondroitin Sulfate Intake Inhibits the IgE-Mediated Allergic Response by Down-Regulating Th2 Responses in Mice. The Journal of Bio-logical Chemistry, 281, 19872-19880.
https://doi.org/10.1074/jbc.M509058200 |
[31] | Mosmann, T.R. and Coffman, R.L. (1989) Heterogeneity of Cyto-kine Secretion Patterns and Functions of Helper T Cells. Advances in Immunology, 46, 111-147. https://doi.org/10.1016/S0065-2776(08)60652-5 |
[32] | Sakai, S., Akiyama, H., Harikai, N., et al. (2002) Effect of Chondroitin Sulfate on Murine Splenocytes Sensitized with Ovalbumin. Immunology Letters, 84, 211-216. https://doi.org/10.1016/S0165-2478(02)00181-5 |
[33] | Asiedu, K., Dzasimatu, S.K. and Kyei, S. (2019) Clinical Subtypes of Dry Eye in Youthful Clinical Sample in Ghana. Contact Lens & Anterior Eye: The Journal of the British Contact Lens Association, 42, 206-211.
https://doi.org/10.1016/j.clae.2018.10.005 |
[34] | Llamas-Moreno, J.F., Baiza-Durán, L.M., Saucedo-Rodríguez, L.R., et al. (2013) Efficacy and Safety of Chondroitin Sulfate/Xanthan Gum versus Polyethylene Glycol/Propylene Gly-col/Hydroxypropyl Guar in Patients with Dry Eye. Clinical Ophthalmology (Auckland, N.Z.), 7, 995-999. https://doi.org/10.2147/OPTH.S46337 |
[35] | Hirai, S., Kawahara, M., Sakamoto, K., et al. (2005) Effects of Various Lubricants on Corneal Surface Regularity in Rabbits. Journal of Ocular Pharmacology and Therapeutics: The Official Journal of the Association for Ocular Pharmacology and Therapeutics, 21, 376-381. https://doi.org/10.1089/jop.2005.21.376 |
[36] | Seccia, M. and Cavina, E. (1989) Risk Factors and Etiopathogenesis of Cancer of the Gallbladder. Annali Italiani di Chirurgia, 60, 163-172. |
[37] | Vrana, N.E., Builles, N., Justin, V., et al. (2008) Development of a Reconstructed Cornea from Collagen-Chondroitin Sulfate Foams and Human Cell Cultures. Investigative Ophthalmology & Visual Science, 49, 5325-5331.
https://doi.org/10.1167/iovs.07-1599 |
[38] | Yoo, M.K., Cho, K.Y., Song, H.H., et al. (2005) Release of Ciprofloxa-cin from Chondroitin 6-Sulfate-Graft-Poloxamer Hydrogel in Vitro for Ophthalmic Drug Delivery. Drug Development and Industrial Pharmacy, 31, 455-463.
https://doi.org/10.1080/03639040500214688 |
[39] | Espíndola, R.F., Castro, E.F., Santhiago, M.R., et al. (2012) A Clinical Comparison between DisCoVisc and 2% Hydroxypropyl Methylcellulose in Phacoemulsification: A Fellow Eye Study. Clinics (Sao Paulo, Brazil), 67, 1059-1062.
https://doi.org/10.6061/clinics/2012(09)13 |
[40] | Strehin, I., Ambrose, W.M., Schein, O., et al. (2009) Synthesis and Characterization of a Chondroitin Sulfate-Polyethylene Glycol Corneal Adhesive. Journal of Cataract and Refractive Surgery, 35, 567-576.
https://doi.org/10.1016/j.jcrs.2008.11.035 |
[41] | Bourne, W.M. (1987) Results of Transplantation of Corneas Pre-served in 2.5% Chondroitin Sulfate. Developments in Ophthalmology, 14, 106-109. https://doi.org/10.1159/000414373 |
[42] | Ledbetter, E.C., Munger, R.J., Ring, R.D., et al. (2006) Efficacy of Two Chondroitin Sulfate Ophthalmic Solutions in the Therapy of Spontaneous Chronic Corneal Epithelial Defects and Ulcera-tive Keratitis Associated with Bullous Keratopathy in Dogs. Veterinary Ophthalmology, 9, 77-87. https://doi.org/10.1111/j.1463-5224.2006.00439.x |
[43] | Hehenberger, K., Kratz, G., Hansson, A., et al. (1998) Fi-broblasts Derived from Human Chronic Diabetic Wounds Have a Decreased Proliferation Rate, Which Is Recovered by the Addition of Heparin. Journal of Dermatological Science, 16, 144-151. https://doi.org/10.1016/S0923-1811(97)00042-X |
[44] | Mour?o, P.A., Boisson-Vidal, C., Tapon-Bretaudière, J., et al. (2001) Inactivation of Thrombin by a Fucosylated Chondroitin Sulfate from Echinoderm. Thrombosis Research, 102, 167-176.
https://doi.org/10.1016/S0049-3848(01)00230-4 |
[45] | Pacheco, R.G., Vicente, C.P., Zancan, P., et al. (2000) Dif-ferent Antithrombotic Mechanisms among Glycosaminoglycans Revealed with a New Fucosylated Chondroitin Sulfate from an Echinoderm. Blood Coagulation & Fibrinolysis: An International Journal in Haemostasis and Thrombosis, 11, 563-573.
https://doi.org/10.1097/00001721-200009000-00009 |
[46] | Mizumoto, S., Takahashi, J. and Sugahara, K. (2012) Receptor for Advanced Glycation End Products (RAGE) Functions as Receptor for Specific Sulfated Glycosaminogly-cans, and Anti-RAGE Antibody or Sulfated Glycosaminoglycans Delivered in Vivo Inhibit Pulmonary Metastasis of Tumor Cells. The Journal of Biological Chemistry, 287, 18985-18994. https://doi.org/10.1074/jbc.M111.313437 |
[47] | Asimakopoulou, A.P., Theocharis, A.D., Tzanakakis, G.N., et al. (2008) The Biological Role of Chondroitin Sulfate in Cancer and Chondroitin-Based Anticancer Agents. In Vivo (Athens, Greece), 22, 385-389. |
[48] | Zorzi, G.K., Párraga, J.E., Seijo, B., et al. (2011) Hybrid Nanoparticle Design Based on Cationized Gelatin and the Polyanions Dextran Sulfate and Chondroitin Sulfate for Ocular Gene Therapy. Macromolecu-lar Bioscience, 11, 905-913. https://doi.org/10.1002/mabi.201100005 |
[49] | Abd Elhamid, A.S., Zayed, D.G., Helmy, M.W., et al. (2018) Lactoferrin-Tagged Quantum Dots-Based Theranostic Nanocapsules for Combined COX-2 Inhibitor/Herbal Therapy of Breast Cancer. Nanomedicine (London, England), 13, 2637-2656. https://doi.org/10.2217/nnm-2018-0196 |
[50] | Pezeshki-Modaress, M., Mirzadeh, H., Zandi, M., et al. (2017) Gela-tin/Chondroitin Sulfate Nanofibrous Scaffolds for Stimulation of Wound Healing: In-Vitro and In-Vivo Study. Journal of Biomedical Materials Research, 105, 2020-2034. https://doi.org/10.1002/jbm.a.35890 |
[51] | Karumbaiah, L., Enam, S.F., Brown, A.C., et al. (2015) Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells. Bioconjugate Chemistry, 26, 2336-2349.
https://doi.org/10.1021/acs.bioconjchem.5b00397 |
[52] | Zhang, M., Ma, Y., Wang, Z., et al. (2019) A CD44-Targeting Programmable Drug Delivery System for Enhancing and Sensitizing Chemotherapy to Drug-Resistant Cancer. ACS Applied Materials & Interfaces, 11, 5851-5861.
https://doi.org/10.1021/acsami.8b19798 |
[53] | Singh, S., Singh, T.G., Singh, M., et al. (2021) Anticonvulsive Ef-fects of Chondroitin Sulfate on Pilocarpine and Pentylenetetrazole Induced Epileptogenesis in Mice. Molecules, 26, 6773. https://doi.org/10.3390/molecules26226773 |
[54] | Kato, D., Era, S., Watanabe, I., et al. (2010) Antiviral Activity of Chondroitin Sulphate E Targeting Dengue Virus Envelope Protein. Antiviral Research, 88, 236-243. https://doi.org/10.1016/j.antiviral.2010.09.002 |
[55] | Chen, S., Chen, W., Chen, Y., et al. (2021) Chondroitin Sulfate Modified 3D Porous Electrospun Nanofiber Scaffolds Promote Cartilage Regeneration. Materials Science & Engineering. C, Materials for Biological Applications, 118, Article ID: 111312. https://doi.org/10.1016/j.msec.2020.111312 |
[56] | Zheng, H.X., Chen, J., Zu, Y.X., et al. (2020) Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, An-ti-Inflammation and OPG/RANKL Expression Regulation. International Journal of Molecular Sciences, 21, 5303. https://doi.org/10.3390/ijms21155303 |
[57] | Zhou, Q., Chen, H., Qu, M., et al. (2011) Development of a Novel ex Vivo Model of Corneal Fungal Adherence. Graefe’s Archive for Clinical and Experimental Ophthalmology, 249, 693-700.
https://doi.org/10.1007/s00417-010-1601-9 |
[58] | Lee, J.Y., Lee, S.H., Kim, H.J., et al. (2004) The Preventive Inhi-bition of Chondroitin Sulfate against the CCl4-Induced Oxidative Stress of Subcellular Level. Archives of Pharmacal Research, 27, 340-345.
https://doi.org/10.1007/BF02980070 |
[59] | Istomina, E.V. and Shikhkerimov, R.K. (2019) The Possibilities of Us-ing Chondroitin Sulfate in Patients with Chronic Back Pain. Zhurnal Nevrologii i Psikhiatrii imeni SS Korsakova, 119, 12-15.
https://doi.org/10.17116/jnevro201911903112 |
[60] | Sugahara, K. and Mikami, T. (2007) Chondroitin/Dermatan Sulfate in the Central Nervous System. Current Opinion in Structural Biology, 17, 536-545. https://doi.org/10.1016/j.sbi.2007.08.015 |
[61] | Kaplan, M. and Aviram, M. (2000) Macrophage Plasma Membrane Chondroitin Sulfate Proteoglycan Binds Oxidized Low-Density Lipoprotein. Atherosclerosis, 149, 5-17. https://doi.org/10.1016/S0021-9150(99)00287-7 |
[62] | Tat, S.K., Pelletier, J.P., Vergés, J., et al. (2007) Chondroitin and Glucosamine Sulfate in Combination Decrease the Pro-Resorptive Properties of Human Osteoarthritis Subchondral Bone Osteoblasts: A Basic Science Study. Arthritis Research & Therapy, 9, R117. https://doi.org/10.1186/ar2325 |
[63] | M?ller, I., Pérez, M., Monfort, J., et al. (2010) Effectiveness of Chondroitin Sulphate in Patients with Concomitant Knee Osteoarthritis and Psoriasis: A Randomized, Double-Blind, Place-bo-Controlled Study. Osteoarthritis and Cartilage, 18, S32-S40. https://doi.org/10.1016/j.joca.2010.01.018 |