全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

相容Malcev代数的表示
Representation of Compatible Malcev Algebra

DOI: 10.12677/AAM.2022.116406, PP. 3788-3796

Keywords: 相容Malcev代数,相容pre-Malcev代数,表示
Compatible Malcev Algebra
, Compatible pre-Malcev Algebra, Representation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文首先给出了相容Malcev代数的定义和两个Malcev代数相容的条件,然后给出了相容Malcev代数的表示,并构造了它的一类特殊表示。证明了相容Malcev代数的表示的对偶仍是相容Malcev代数的表示。最后给出了相容pre-Malcev代数的定义和两个pre-Malcev代数相容的条件。
In this paper, we first give the definition of compatible Malcev algebra and the conditions that two Malcev algebras are compatible. Then, we give the representation of compatible Malcev algebra and construct a special representation of compatible Malcev algebra. It is proved that the dual mapping of the representation of compatible Malcev algebra is still the representation of compatible Malcev algebra. Finally, we give the definition of compatible pre-Malcev algebra and the conditions that two pre-Malcev algebras are compatible.

References

[1]  Hegazi, A.S., Abdelwahab, H. and Calderon Martin, A.J. (2018) Classification of Nilpotent Malcev Algebras of Small Dimensions over Arbitrary Fields of Characteristic Not 2. Algebras and Representation Theory, 21, 19-45.
https://doi.org/10.1007/s10468-017-9701-4
[2]  Kornev, A.I. (2014) Free Malcev algebra of Rank Three. Journal of Algebra, 405, 38-68.
https://doi.org/10.1016/j.jalgebra.2014.01.033
[3]  安慧辉, 修立奇. pre-Malcev代数的表示与配对[J]. 辽宁师范大学学报, 2018, 41(2): 165-173.
[4]  Wu, M.-Z. and Bai, C.-M. (2015) Compatible Lie Bialgebras. Communica-tions in Theoretical Physics, 63, 653-664.
https://doi.org/10.1088/0253-6102/63/6/653
[5]  Sagle, A.A. (1961) Malcev Algebras. Transactions of the Amer-ican Mathematical Society, 101, 426-458.
https://doi.org/10.1090/S0002-9947-1961-0143791-X
[6]  Kuz’min, E.N. (1968) Mal’cev Algebras and Their Representations. Algebra i Logika, 7, 48-69.
[7]  Madariaga, S. (2017) Splitting of Operations for Alternative and Mal-cev Structures. Communications in Algebra, 45, 183-197.
https://doi.org/10.1080/00927872.2016.1175573

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133