|
Bioprocess 2022
鲨源单域抗体的特点及研究进展
|
Abstract:
[1] | Weiner, L.M., Murray, J.C. and Shuptrine, C.W. (2012) Antibody-Based Immunotherapy of Cancer. Cell, 148, 1081-1084. https://doi.org/10.1016/j.cell.2012.02.034 |
[2] | Smith, G.P., Hood, L. and Fitch, W.M. (1971) Anti-body Diversity. Annual Review of Biochemistry, 40, 969-1012.
https://doi.org/10.1146/annurev.bi.40.070171.004541 |
[3] | Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., et al. (1993) Naturally Occurring Antibodies Devoid of Light Chains. Nature, 363, 446-448. https://doi.org/10.1038/363446a0 |
[4] | Muyldermans, S. and Lauwereys, M.J. (1999) Unique Single-Domain An-tigen Binding Fragments Derived from Naturally Occurring Camel Heavy-Chain Antibodies. Journal of Molecular Recognition: JMR, 12, 131-140.
https://doi.org/10.1002/(SICI)1099-1352(199903/04)12:2<131::AID-JMR454>3.0.CO;2-M |
[5] | Greenberg, A.S., Avila, D., Hughes, M., et al. (1995) A New Antigen Receptor Gene Family That Undergoes Rearrangement and Exten-sive Somatic Diversification in Sharks. Nature, 374, 168-173. https://doi.org/10.1038/374168a0 |
[6] | Crouch, K., Smith, L., Williams, R., et al. (2013) Humoral Immune Response of the Small-Spotted Catshark, Scyliorhinus canicula. Fish & Shellfish Immunology, 34, 1158-1169. https://doi.org/10.1016/j.fsi.2013.01.025 |
[7] | Stanfield, R., Dooley, H., Flajnik, M., et al. (2004) Crystal Structure of a Shark Single-Domain Antibody V Region in Complex with Lyso-zyme. Science (New York, NY), 305, 1770-1773. https://doi.org/10.1126/science.1101148 |
[8] | Liu, J. anderson, G., Delehanty, J., et al. (2007) Selection of Cholera Toxin Specific IgNAR Single-Domain Antibodies from a Na?ve Shark Library. Molecular Immunology, 44, 1775-1783. https://doi.org/10.1016/j.molimm.2006.07.299 |
[9] | Fennell, B., Darmanin-Sheehan, A., Hufton, S., et al. (2010) Dissection of the IgNAR V Domain: Molecular Scanning and Orthologue Database Mining Define Novel IgNAR Hallmarks and Affinity Maturation Mechanisms. Journal of Molec-ular Biology, 400, 155-170. https://doi.org/10.1016/j.jmb.2010.04.061 |
[10] | Lauwereys, M., Arbabi, G.M., Desmyter, A., et al. (1998) Potent Enzyme Inhibitors Derived from Dromedary Heavy-Chain Antibodies. EMBO Journal, 17, 3512-3520. https://doi.org/10.1093/emboj/17.13.3512 |
[11] | Streltsov, V.A., Varghese, J.N., Carmichael, J.A., et al. (2004) Structural Evidence for Evolution of Shark Ig New Antigen Receptor Variable Domain Antibodies from a Cell-Surface Receptor. Proceedings of the National Academy of Sciences of the United States of America, 101, 12444-12449. https://doi.org/10.1073/pnas.0403509101 |
[12] | Streltsov, V.A., Carmichael, J.A. and Nuttall, S.D. (2005) Structure of a Shark IgNAR Antibody Variable Domain and Modeling of an Early-Developmental Isotype. Pro-tein Science, 14, 2901-2909. https://doi.org/10.1110/ps.051709505 |
[13] | Griffiths, K., Dolezal, O., Parisi, K., et al. (2013) Shark Variable New Antigen Receptor (VNAR) Single Domain Antibody Fragments: Stability and Diagnostic Applications. Antibodies, 2, 66-81. https://doi.org/10.3390/antib2010066 |
[14] | Dumoulin, M., Conrath, K., Van Meirhaeghe, A., et al. (2002) Single-Domain Antibody Fragments with High Conformational Stability. Protein Science, 11, 500-515. https://doi.org/10.1110/ps.34602 |
[15] | Feige, M.J., Grawert, M.A., Marcinowski, M., et al. (2014) The Structural Analysis of Shark IgNAR Antibodies Reveals Evolutionary Principles of Immunoglobulins. Proceedings of the National Academy of Sciences of the United States of America, 111, 8155-8160. https://doi.org/10.1073/pnas.1321502111 |
[16] | Genst, E.D., Saerens, D., Muyldermans, S., et al. (2006) Antibody Repertoire Development in Camelids. Developmental & Comparative Immunology, 30, 187-198. https://doi.org/10.1016/j.dci.2005.06.010 |
[17] | Hussack, G., Hirama, T., Ding, W., et al. (2011) Engineered Sin-gle-Domain Antibodies with High Protease Resistance and Thermal Stability. PLOS ONE, 6, e28218. https://doi.org/10.1371/journal.pone.0028218 |
[18] | Khosroshahi, S.A., Farajnia, S., Ghiamirad, M., et al. (2016) Development and Evaluation of a Single Domain Antibody against Human Epidermal Growth Factor Receptor (EGFR). Protein Expression and Purification, 120, 59-64.
https://doi.org/10.1016/j.pep.2015.12.005 |
[19] | Nuttall, S.D., Humberstone, K.S., Krishnan, U.V., et al. (2004) Se-lection and Affinity Maturation of IgNAR Variable Domains Targeting Plasmodium falciparum AMA1. Proteins, 55, 187-197. https://doi.org/10.1002/prot.20005 |
[20] | Vincke, C., Loris, R., Saerens, D., et al. (2009) General Strategy to Humanize a Camelid Single-Domain Antibody and Identification of a Universal Humanized Nanobody Scaffold. The Journal of Biological Chemistry, 284, 3273-3284.
https://doi.org/10.1074/jbc.M806889200 |
[21] | Dooley, H. (2022) Generation of VNAR Libraries from Immunized Sharks and Selection of Target-Specific Clones. Methods in Molecular Biology (Clifton, NJ), 24, 57-72. https://doi.org/10.1007/978-1-0716-1944-5_4 |
[22] | Rossotti, M., BeLanger, K., Henry, K., et al. (2021) Immuno-genicity and Humanization of Single-Domain Antibodies. FEBS Journal, 12, 33-37. https://doi.org/10.1111/febs.15809 |
[23] | Riechmann, L. and Muyldermans, S. (1999) Single Domain Antibodies: Comparison of Camel VH and Camelised Human VH Domains. Journal of Immunological Methods, 231, 25-38. https://doi.org/10.1016/S0022-1759(99)00138-6 |
[24] | Muyldermans, S. (2013) Nanobodies: Natural Sin-gle-Domain Antibodies. Annual Review of Biochemistry, 82, 775-797.
https://doi.org/10.1146/annurev-biochem-063011-092449 |
[25] | Criscitiello, M.F. (2014) What the Shark Immune System Can and Cannot Provide for the Expanding Design Landscape of Immunotherapy. Expert Opinion on Drug Dis-covery, 9, 725-739.
https://doi.org/10.1517/17460441.2014.920818 |
[26] | Nelson, J.S., Grande, T.C. and Wilson, M.V. (2016) Fishes of the World. 5th Edition, John Wiley & Sons, Hoboken.
https://doi.org/10.1002/9781119174844 |
[27] | 张文杰. 来源于条纹斑竹鲨抗HBsAg单域抗体的筛选及重组抗体的活性研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2020. |
[28] | Esparza, T., Martin, N., Anderson, G., et al. (2020) High Affinity Nanobodies Block SARS-CoV-2 Spike Receptor Binding Domain Interaction with Human Angio-tensin Converting Enzyme. Scientific Reports, 10, Article No. 22370.
https://doi.org/10.1038/s41598-020-79036-0 |
[29] | Sevy, A., Chen, M., Castor, M., et al. (2020) Structure- and Se-quence-Based Design of Synthetic Single-Domain Antibody Libraries. Protein Engineering, Design and Selection, 33, 32-38. https://doi.org/10.1093/protein/gzaa028 |
[30] | 刘星, 陈奇. 鲨源单域抗体的研究进展[J]. 生物工程学报, 2020, 36(6): 1069-1082. |
[31] | Feng, M.Q., Bian, H.J., Wu, X.L., et al. (2019) Construction and Next-Generation Se-quencing Analysis of a Large Phage-Displayed VNAR Single-Domain Antibody Library from Six Naive Nurse Sharks. Antibody Therapeutics, 2, 1-11. https://doi.org/10.1093/abt/tby011 |
[32] | Nuttall, S.D., Krishnan, U.V., Hattarki, M., et al. (2001) Isolation of the New Antigen Receptor from Wobbegong Sharks, and Use as a Scaffold for the Display of Protein Loop Libraries. Molecular Immunology, 38, 313-326.
https://doi.org/10.1016/S0161-5890(01)00057-8 |
[33] | 康晓圳, 曹佳莉, 张保惠, 袁权. 单域抗体的研究和应用进展[J]. 生物工程学报, 2018, 34(12): 1974-1984. |
[34] | 叶波, 林影, 韩双艳. 酵母细胞表面展示系统的研究进展及其应用[J]. 工业微生物, 2007, 37(6): 56-61. |
[35] | Sheehan, J. and Marasco, W.A. (2015) Phage and Yeast Display. Microbiology Spectrum, 3, AID-0028-2014.
https://doi.org/10.1128/microbiolspec.AID-0028-2014 |
[36] | Mazor, Y., van Blarcom, T., Mabry, R., et al. (2007) Isolation of Engineered, Full-Length Antibodies from Libraries Expressed in Escherichia coli. Nature Biotechnology, 25, 563-565. https://doi.org/10.1038/nbt1296 |
[37] | Boder, E.T., Raeeszadeh-Sarmazdeh, M. and Price, J.V. (2012) En-gineering Antibodies by Yeast Display. Archives of Biochemistry and Biophysics, 526, 99-106. https://doi.org/10.1016/j.abb.2012.03.009 |
[38] | Kang, M., Choi, Y., Kim, H., et al. (2022) Single-Cell RNA-Sequencing of Nicotiana attenuata Corolla Cells Reveals the Biosynthetic Pathway of a Floral Scent. New Phytolo-gist, 234, 527-544. https://doi.org/10.1111/nph.17992 |
[39] | 徐志伟, 袁观斗, 吕军, 何松青. 单细胞测序和空间转录组技术在肝病研究中的应用进展[J]. 中华实验外科杂志, 2022, 39(4): 810-813. |
[40] | 郭园. 核糖体展示研究进展[J]. 生物技术通报, 2016, 32(8): 22-27. |
[41] | 郑磊, 李前伟. 核糖体展示技术的研究与应用现状[J]. 现代生物医学进展, 2009, 9(19): 3753-3756+3763. |
[42] | 张万巧, 王建, 贺福初. mRNA展示技术[J]. 生物化学与生物物理进展, 2006(8): 795-799. |
[43] | 卢明锋. 体外展示技术研究进展[J]. 生命科学, 2010, 22(8): 823-830. |
[44] | 姜忍忍, 许超, 周小理, 姚刚. 纳米抗体的应用及其研究新进展[J]. 生命的化学, 2013, 33(3): 307-315. |