全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2022 

鲨源单域抗体的特点及研究进展
Characteristics and Research Progress of Single Domain Antibody from Shark

DOI: 10.12677/BP.2022.122015, PP. 131-137

Keywords: 鲨鱼,单域抗体,IgNAR,VNAR

Full-Text   Cite this paper   Add to My Lib

Abstract:

抗体从发现至今一直都是热门研究领域,自免疫检查点机制被发现后,关于能够阻断关键通路的抗体的研究更是呈现爆发性增长。随着研究的深入,单抗因其分子量偏大,穿透性差而影响了其在临床上的广泛应用,故研发一类分子量更小、穿透力更强的抗体进行靶向治疗成为抗体研发领域的重要热点。鲨鱼等软骨鱼类产生的IgNAR抗体是一种仅有重链的抗体,其可变区VNAR是目前已知的最小的完整抗原结合单位,是极具潜力能够取代传统单抗的新型抗体药物。本文对了鲨源单域抗体的特点以及各种突出于常规抗体的优势以及筛选方法进行了综述,并对鲨源单域抗体的未来前景进行了展望。
Antibodies have always been a hot research field since their discovery. After the discovery of the autoimmune checkpoint mechanism, the research on the key molecule antibodies has shown explosive growth. With the development of research, single domain antibodies have been widely used in clinical practice due to their large molecular weight and poor penetration. Therefore, developing a class of antibodies with smaller molecular weight and stronger penetration for targeted therapy has become an important focus in the field of antibody research and development. The IgNAR produced by cartilaginous fish such as shark is a heavy chain only antibody, and its variable region VNAR is the smallest complete antigen-binding unit known so far. It is a new type of antibody-drug with great potential to replace traditional single domain antibodies. In this paper, the characteristics, advantages and screening methods of shark-derived single domain antibodies are reviewed, and the future prospects of shark-derived single domain antibodies are prospected.

References

[1]  Weiner, L.M., Murray, J.C. and Shuptrine, C.W. (2012) Antibody-Based Immunotherapy of Cancer. Cell, 148, 1081-1084.
https://doi.org/10.1016/j.cell.2012.02.034
[2]  Smith, G.P., Hood, L. and Fitch, W.M. (1971) Anti-body Diversity. Annual Review of Biochemistry, 40, 969-1012.
https://doi.org/10.1146/annurev.bi.40.070171.004541
[3]  Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., et al. (1993) Naturally Occurring Antibodies Devoid of Light Chains. Nature, 363, 446-448.
https://doi.org/10.1038/363446a0
[4]  Muyldermans, S. and Lauwereys, M.J. (1999) Unique Single-Domain An-tigen Binding Fragments Derived from Naturally Occurring Camel Heavy-Chain Antibodies. Journal of Molecular Recognition: JMR, 12, 131-140.
https://doi.org/10.1002/(SICI)1099-1352(199903/04)12:2<131::AID-JMR454>3.0.CO;2-M
[5]  Greenberg, A.S., Avila, D., Hughes, M., et al. (1995) A New Antigen Receptor Gene Family That Undergoes Rearrangement and Exten-sive Somatic Diversification in Sharks. Nature, 374, 168-173.
https://doi.org/10.1038/374168a0
[6]  Crouch, K., Smith, L., Williams, R., et al. (2013) Humoral Immune Response of the Small-Spotted Catshark, Scyliorhinus canicula. Fish & Shellfish Immunology, 34, 1158-1169.
https://doi.org/10.1016/j.fsi.2013.01.025
[7]  Stanfield, R., Dooley, H., Flajnik, M., et al. (2004) Crystal Structure of a Shark Single-Domain Antibody V Region in Complex with Lyso-zyme. Science (New York, NY), 305, 1770-1773.
https://doi.org/10.1126/science.1101148
[8]  Liu, J. anderson, G., Delehanty, J., et al. (2007) Selection of Cholera Toxin Specific IgNAR Single-Domain Antibodies from a Na?ve Shark Library. Molecular Immunology, 44, 1775-1783.
https://doi.org/10.1016/j.molimm.2006.07.299
[9]  Fennell, B., Darmanin-Sheehan, A., Hufton, S., et al. (2010) Dissection of the IgNAR V Domain: Molecular Scanning and Orthologue Database Mining Define Novel IgNAR Hallmarks and Affinity Maturation Mechanisms. Journal of Molec-ular Biology, 400, 155-170.
https://doi.org/10.1016/j.jmb.2010.04.061
[10]  Lauwereys, M., Arbabi, G.M., Desmyter, A., et al. (1998) Potent Enzyme Inhibitors Derived from Dromedary Heavy-Chain Antibodies. EMBO Journal, 17, 3512-3520.
https://doi.org/10.1093/emboj/17.13.3512
[11]  Streltsov, V.A., Varghese, J.N., Carmichael, J.A., et al. (2004) Structural Evidence for Evolution of Shark Ig New Antigen Receptor Variable Domain Antibodies from a Cell-Surface Receptor. Proceedings of the National Academy of Sciences of the United States of America, 101, 12444-12449.
https://doi.org/10.1073/pnas.0403509101
[12]  Streltsov, V.A., Carmichael, J.A. and Nuttall, S.D. (2005) Structure of a Shark IgNAR Antibody Variable Domain and Modeling of an Early-Developmental Isotype. Pro-tein Science, 14, 2901-2909.
https://doi.org/10.1110/ps.051709505
[13]  Griffiths, K., Dolezal, O., Parisi, K., et al. (2013) Shark Variable New Antigen Receptor (VNAR) Single Domain Antibody Fragments: Stability and Diagnostic Applications. Antibodies, 2, 66-81.
https://doi.org/10.3390/antib2010066
[14]  Dumoulin, M., Conrath, K., Van Meirhaeghe, A., et al. (2002) Single-Domain Antibody Fragments with High Conformational Stability. Protein Science, 11, 500-515.
https://doi.org/10.1110/ps.34602
[15]  Feige, M.J., Grawert, M.A., Marcinowski, M., et al. (2014) The Structural Analysis of Shark IgNAR Antibodies Reveals Evolutionary Principles of Immunoglobulins. Proceedings of the National Academy of Sciences of the United States of America, 111, 8155-8160.
https://doi.org/10.1073/pnas.1321502111
[16]  Genst, E.D., Saerens, D., Muyldermans, S., et al. (2006) Antibody Repertoire Development in Camelids. Developmental & Comparative Immunology, 30, 187-198.
https://doi.org/10.1016/j.dci.2005.06.010
[17]  Hussack, G., Hirama, T., Ding, W., et al. (2011) Engineered Sin-gle-Domain Antibodies with High Protease Resistance and Thermal Stability. PLOS ONE, 6, e28218.
https://doi.org/10.1371/journal.pone.0028218
[18]  Khosroshahi, S.A., Farajnia, S., Ghiamirad, M., et al. (2016) Development and Evaluation of a Single Domain Antibody against Human Epidermal Growth Factor Receptor (EGFR). Protein Expression and Purification, 120, 59-64.
https://doi.org/10.1016/j.pep.2015.12.005
[19]  Nuttall, S.D., Humberstone, K.S., Krishnan, U.V., et al. (2004) Se-lection and Affinity Maturation of IgNAR Variable Domains Targeting Plasmodium falciparum AMA1. Proteins, 55, 187-197.
https://doi.org/10.1002/prot.20005
[20]  Vincke, C., Loris, R., Saerens, D., et al. (2009) General Strategy to Humanize a Camelid Single-Domain Antibody and Identification of a Universal Humanized Nanobody Scaffold. The Journal of Biological Chemistry, 284, 3273-3284.
https://doi.org/10.1074/jbc.M806889200
[21]  Dooley, H. (2022) Generation of VNAR Libraries from Immunized Sharks and Selection of Target-Specific Clones. Methods in Molecular Biology (Clifton, NJ), 24, 57-72.
https://doi.org/10.1007/978-1-0716-1944-5_4
[22]  Rossotti, M., BeLanger, K., Henry, K., et al. (2021) Immuno-genicity and Humanization of Single-Domain Antibodies. FEBS Journal, 12, 33-37.
https://doi.org/10.1111/febs.15809
[23]  Riechmann, L. and Muyldermans, S. (1999) Single Domain Antibodies: Comparison of Camel VH and Camelised Human VH Domains. Journal of Immunological Methods, 231, 25-38.
https://doi.org/10.1016/S0022-1759(99)00138-6
[24]  Muyldermans, S. (2013) Nanobodies: Natural Sin-gle-Domain Antibodies. Annual Review of Biochemistry, 82, 775-797.
https://doi.org/10.1146/annurev-biochem-063011-092449
[25]  Criscitiello, M.F. (2014) What the Shark Immune System Can and Cannot Provide for the Expanding Design Landscape of Immunotherapy. Expert Opinion on Drug Dis-covery, 9, 725-739.
https://doi.org/10.1517/17460441.2014.920818
[26]  Nelson, J.S., Grande, T.C. and Wilson, M.V. (2016) Fishes of the World. 5th Edition, John Wiley & Sons, Hoboken.
https://doi.org/10.1002/9781119174844
[27]  张文杰. 来源于条纹斑竹鲨抗HBsAg单域抗体的筛选及重组抗体的活性研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2020.
[28]  Esparza, T., Martin, N., Anderson, G., et al. (2020) High Affinity Nanobodies Block SARS-CoV-2 Spike Receptor Binding Domain Interaction with Human Angio-tensin Converting Enzyme. Scientific Reports, 10, Article No. 22370.
https://doi.org/10.1038/s41598-020-79036-0
[29]  Sevy, A., Chen, M., Castor, M., et al. (2020) Structure- and Se-quence-Based Design of Synthetic Single-Domain Antibody Libraries. Protein Engineering, Design and Selection, 33, 32-38.
https://doi.org/10.1093/protein/gzaa028
[30]  刘星, 陈奇. 鲨源单域抗体的研究进展[J]. 生物工程学报, 2020, 36(6): 1069-1082.
[31]  Feng, M.Q., Bian, H.J., Wu, X.L., et al. (2019) Construction and Next-Generation Se-quencing Analysis of a Large Phage-Displayed VNAR Single-Domain Antibody Library from Six Naive Nurse Sharks. Antibody Therapeutics, 2, 1-11.
https://doi.org/10.1093/abt/tby011
[32]  Nuttall, S.D., Krishnan, U.V., Hattarki, M., et al. (2001) Isolation of the New Antigen Receptor from Wobbegong Sharks, and Use as a Scaffold for the Display of Protein Loop Libraries. Molecular Immunology, 38, 313-326.
https://doi.org/10.1016/S0161-5890(01)00057-8
[33]  康晓圳, 曹佳莉, 张保惠, 袁权. 单域抗体的研究和应用进展[J]. 生物工程学报, 2018, 34(12): 1974-1984.
[34]  叶波, 林影, 韩双艳. 酵母细胞表面展示系统的研究进展及其应用[J]. 工业微生物, 2007, 37(6): 56-61.
[35]  Sheehan, J. and Marasco, W.A. (2015) Phage and Yeast Display. Microbiology Spectrum, 3, AID-0028-2014.
https://doi.org/10.1128/microbiolspec.AID-0028-2014
[36]  Mazor, Y., van Blarcom, T., Mabry, R., et al. (2007) Isolation of Engineered, Full-Length Antibodies from Libraries Expressed in Escherichia coli. Nature Biotechnology, 25, 563-565.
https://doi.org/10.1038/nbt1296
[37]  Boder, E.T., Raeeszadeh-Sarmazdeh, M. and Price, J.V. (2012) En-gineering Antibodies by Yeast Display. Archives of Biochemistry and Biophysics, 526, 99-106.
https://doi.org/10.1016/j.abb.2012.03.009
[38]  Kang, M., Choi, Y., Kim, H., et al. (2022) Single-Cell RNA-Sequencing of Nicotiana attenuata Corolla Cells Reveals the Biosynthetic Pathway of a Floral Scent. New Phytolo-gist, 234, 527-544.
https://doi.org/10.1111/nph.17992
[39]  徐志伟, 袁观斗, 吕军, 何松青. 单细胞测序和空间转录组技术在肝病研究中的应用进展[J]. 中华实验外科杂志, 2022, 39(4): 810-813.
[40]  郭园. 核糖体展示研究进展[J]. 生物技术通报, 2016, 32(8): 22-27.
[41]  郑磊, 李前伟. 核糖体展示技术的研究与应用现状[J]. 现代生物医学进展, 2009, 9(19): 3753-3756+3763.
[42]  张万巧, 王建, 贺福初. mRNA展示技术[J]. 生物化学与生物物理进展, 2006(8): 795-799.
[43]  卢明锋. 体外展示技术研究进展[J]. 生命科学, 2010, 22(8): 823-830.
[44]  姜忍忍, 许超, 周小理, 姚刚. 纳米抗体的应用及其研究新进展[J]. 生命的化学, 2013, 33(3): 307-315.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133