|
骨微环境内细胞因子影响乳腺癌骨转移的机制研究
|
Abstract:
骨转移作为晚期乳腺癌最常见的转移部位,其存在往往伴随着一系列骨相关事件,对患者生活造成了严重影响。骨微环境主要包括骨基质细胞(成骨细胞、破骨细胞等)、细胞外基质以及一系列细胞因子(甲状旁腺激素相关蛋白、白细胞介素、肿瘤坏死因子等),在正常骨骼中维持着相对平衡状态。乳腺癌肿瘤细胞经过增殖、外溢后到达骨骼,会破坏此平衡,造成骨微环境的失调,影响骨代谢健康,从而增加乳腺癌骨转移的发生风险,也是促进骨转移进展的重要因素。因此探索并了解骨微环境内细胞及细胞因子与转移病灶的相互作用十分重要。本文主要阐述了骨微环境对乳腺癌骨转移发生发展机制的相关研究。
Bone metastasis is the most common metastatic site of advanced breast cancer. Its existence is of-ten accompanied by a series of skeletal-related events, which has a serious impact on patients’ lives. The bone microenvironment mainly includes bone matrix cells (osteoblast, osteoclast, etc.), extra-cellular matrix and a series of cytokines (parathyroid hormone related protein, interleukin, tumor necrosis factor, etc.), which maintain a relative balance in normal bones. Breast cancer tumor cells reach the bone after proliferation and overflow, which will disrupt this balance, cause the disorder of the bone microenvironment, affect the health of bone metabolism, and increase the risk of breast cancer bone metastasis, which is also an important factor in promoting the progress of bone metas-tasis. Therefore, it is very important to explore and understand the interaction between metastasis and cells or cytokines in the bone microenvironment. This article mainly elaborates the research on the mechanism of bone microenvironment on the occurrence and development of breast cancer bone metastasis.
[1] | Van Duijnhoven, F.J., Bezemer, I.D., Peeters, P.H., et al. (2005) Polymorphisms in the Estrogen Receptor Alpha Gene and Mammographic Density. Cancer Epidemi-ology, Biomarkers & Prevention, 14, 2655-2600.
https://doi.org/10.1158/1055-9965.EPI-05-0398 |
[2] | Ioannidis, J.P., Ralston, S.H., Bennett, S.T., et al. (2004) Differential Genetic Effects of ESR1 Gene Polymorphisms on Osteoporosis Outcomes. JAMA, 292, 2105-2114. https://doi.org/10.1001/jama.292.17.2105 |
[3] | 殷玉莲, 张卫红, 周悦, 等. ERα基因单核苷酸多态性与乳腺癌应用芳香化酶抑制剂引发骨丢失的相关性研究[J]. 实用肿瘤学杂志, 2018, 32(1): 14-18. |
[4] | Kraemer, B., Rothmund, R., Banys, M., et al. (2011) Impaired Bone Microenvironment: Correlation between Bone Density and Pres-ence of Disseminated Tumor Cells. Anticancer Research, 31, 4423-4428. |
[5] | Early Breast Cancer Trialists’ Collabora-tive Group (EBCTCG) (2015) Adjuvant Bisphosphonate Treatment in Early Breast Cancer: Meta-Analyses of Individual Patient Data from Randomised Trials. The Lancet, 386, 1353-1361.
https://doi.org/10.1016/S0140-6736(15)60908-4 |
[6] | Tulotta, C., Lefley, D.V., Freeman, K., et al. (2019) Endog-enous Production of IL1B by Breast Cancer Cells Drives Metastasis and Colonization of the Bone Microenvironment. Clinical Cancer Research, 25, 2769-2782.
https://doi.org/10.1158/1078-0432.CCR-18-2202 |
[7] | Holen, I., Lefley, D.V., Francis, S.E., et al. (2016) IL-1 Drives Breast Cancer Growth and Bone Metastasis in Vivo. Oncotarget, 7, 75571-75584. https://doi.org/10.18632/oncotarget.12289 |
[8] | Zhang, W., Bado, I.L., Hu, J., et al. (2021) The Bone Microenvi-ronment Invigorates Metastatic Seeds for Further Dissemination. Cell, 184, 2471-2486. https://doi.org/10.1016/j.cell.2021.03.011 |
[9] | Sosnoski, D.M., Krishnan, V., Kraemer, W.J., et al. (2012) Changes in Cytokines of the Bone Microenvironment during Breast Cancer Metastasis. International Journal of Breast Cancer, 2012, Article ID: 160265.
https://doi.org/10.1155/2012/160265 |
[10] | Rucci, N., Sanità, P., Delle Monache, S., et al. (2014) Molecular Pathogenesis of Bone Metastases in Breast Cancer: Proven and Emerging Therapeutic Targets. World Journal of Clinical Oncology, 5, 335-347.
https://doi.org/10.5306/wjco.v5.i3.335 |
[11] | Ren, G., Esposito, M. and Kang, Y. (2015) Bone Metastasis and the Metastatic Niche. Journal of Molecular Medicine (Berlin, Germany), 93, 1203-1212. https://doi.org/10.1007/s00109-015-1329-4 |
[12] | 许克寒, 肖建如. 骨微环境在骨转移瘤形成早期的作用[J]. 国际骨科学杂志, 2018, 39(1): 37-40. |
[13] | Hofbauer, L.C., Rachner, T.D., Coleman, R.E., et al. (2014) Endocrine Aspects of Bone Metastases. The Lancet Diabetes & Endocrinology, 2, 500-512. https://doi.org/10.1016/S2213-8587(13)70203-1 |
[14] | 鲁光平, 殷咏梅, 周雪峰, 等. 乳腺癌骨转移机制与靶向治疗进展[J]. 现代肿瘤医学, 2017, 25(2): 314-318. |
[15] | Park, S.A., Jeong, M.S., Ha, K.T., et al. (2018) Structure and Function of Vascular Endothelial Growth Factor and Its Receptor System. BMB Reports, 51, 73-78. https://doi.org/10.5483/BMBRep.2018.51.2.233 |
[16] | Zhang, L., Zhang, S., Yao, J., et al. (2015) Microenviron-ment-Induced PTEN Loss by Exosomal microRNA Primes Brain Metastasis Outgrowth. Nature, 527, 100-104. https://doi.org/10.1038/nature15376 |
[17] | Akhtar, M., Haider, A., Rashid, S., et al. (2019) Paget’s “Seed and Soil” Theory of Cancer Metastasis: An Idea Whose Time Has Come. Advances in Anatomic Pathology, 26, 69-74. https://doi.org/10.1097/PAP.0000000000000219 |
[18] | Hoshino, A., Costa-Silva, B., Shen, T.L., et al. (2015) Tu-mour Exosome Integrins Determine Organotropic Metastasis. Nature, 527, 329-335. |
[19] | Walker, N.D., Patel, J., Munoz, J.L., et al. (2015) The Bone Marrow Niche in Support of Breast Cancer Dormancy. Cancer Letters, 15, 664-673. |
[20] | Lawson, M.A., McDonald, M.M., Kovacic, N., et al. (2015) Osteoclasts Control Reactivation of Dormant Myeloma Cells by Remodelling the Endosteal Niche. Nature Communications, 6, Article No. 8983. |
[21] | Xie, L., Sun, Z., Hong, Z., et al. (2018) Temporal and Molecular Dynamics of Human Metastatic Breast Carcinoma Cell Ad-hesive Interactions with Human Bone Marrow Endothelium Analyzed by Single-Cell Force Spectroscopy. PLOS ONE, 13, e0204418. https://doi.org/10.1371/journal.pone.0204418 |
[22] | Hanahan, D. and Weinberg, R.A. (2011) Hall-marks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013 |
[23] | Rao, S., Cronin, S.J.F., Sigl, V., et al. (2018) RANKL and RANK: From Mammalian Physiology to Cancer Treatment. Trends in Cell Biology, 28, 213-223. https://doi.org/10.1016/j.tcb.2017.11.001 |
[24] | 林明曦, 张剑. 乳腺癌骨转移分子机制的研究进展[J]. 肿瘤, 2019, 39(9): 767-774. |
[25] | Perez-Garcia, J., Mu?oz-Couselo, E. and Cortes, J. (2013) Bone Metastases: Causes, Con-sequences and Therapeutic Opportunities. EJC Supplements, 11, 254-256. https://doi.org/10.1016/j.ejcsup.2013.07.035 |
[26] | Weilbaecher, K.N., Guise, T.A. and McCauley, L.K. (2011) Cancer to Bone: A Fatal Attraction. Nature Reviews Cancer, 11, 411-425. https://doi.org/10.1038/nrc3055 |
[27] | 崔军威, 刘晓岭, 胡艺冰, 等. 乳腺癌骨转移患者临床病理特征及预后影响因素分析: 基于SEER数据库的回顾性研究[J]. 中华乳腺病杂志, 2020, 14(5): 274-279. |
[28] | Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2015) Aromatase Inhibitors versus Tamoxifen in Early Breast Cancer: Patient-Level Meta-Analysis of the Randomised Trials. The Lancet, 386, 1341-1352.
https://doi.org/10.1016/S0140-6736(15)61074-1 |
[29] | Hadji, P., Aapro, M.S., Body, J.J., et al. (2017) Management of Aromatase Inhibitor-Associated Bone Loss (AIBL) in Postmenopausal Women with Hormone Sensitive Breast Can-cer: Joint Position Statement of the IOF, CABS, ECTS, IEG, ESCEO IMS, and SIOG. Journal of Bone Oncology, 7, 1-12. https://doi.org/10.1016/j.jbo.2017.03.001 |
[30] | Nakamura, T., Imai, Y., Matsumoto, T., et al. (2007) Estrogen Prevents Bone Loss via Estrogen Receptor Alpha and Induction of Fas Ligand in Osteoclasts. Cell, 130, 811-823. https://doi.org/10.1016/j.cell.2007.07.025 |
[31] | 郭燕. 骨质疏松症及其相关性状易感基因定位的系统遗传学研究[D]: [博士学位论文]. 西安: 西安交通大学, 2009. |
[32] | Luo, L.M., Xia, W.B., Nie, M., et al. (2014) Association of ESR1 and C6orf97 Gene Polymorphism with Osteoporosis in Postmenopausal Women. Molecular Biology Reports, 41, 3235-3243. https://doi.org/10.1007/s11033-014-3186-6 |
[33] | Bellavia, D., Salamanna, F., Raimondi, L., et al. (2019) Deregulated miRNAs in Osteoporosis: Effects in Bone Metastasis. Cellular and Molecular Life Sciences, 76, 3723-3744. https://doi.org/10.1007/s00018-019-03162-w |