全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

邻苯二甲酸二丁酯暴露对大型溞miR-153及AKT基因表达的影响和功能分析
Expression and Function Analysis of miR-153 and AKTgene in Daphnia magna Exposed to Dibutyl Phthalate

DOI: 10.12677/AMS.2022.92019, PP. 140-149

Keywords: 邻苯二甲酸二丁酯,大型溞,miR-153,AKT
Dibutyl Phthalate
, Daphnia magna, miR-153, AKT

Full-Text   Cite this paper   Add to My Lib

Abstract:

microRNAs参与调控动物所有的生命过程,包括生长、发育、生物和非生物应激反应等。microRNAs与其调控的靶基因已被证实参与水生动物对环境胁迫的应答。为了探究miR-153的生物学功能及邻苯二甲酸二丁酯(DBP)暴露对大型溞miR-153及其靶基因AKT表达的影响,我们对各物种miR-153序列进行多序列比对,利用miRanda和TargetScan分析miR-153的靶基因并对其进行功能富集分析,实时荧光定量PCR检测了miR-153和AKT在DBP暴露后大型溞体内的表达变化。结果显示,多序列比对发现11个物种miR-153基因序列保守性很高,20个碱基完全一致;miR-153的742个靶基因,主要富集在DNA模板和转录调控、氧化还原和信号转导等生物学过程,且靶基因参与胞吞、平滑肌收缩、细胞色素P450对异生素的代谢等代谢信号通路的调节;不同浓度、不同时间的DBP暴露后,与对照组相比,大型溞miR-153表达量出现了极显著上升(p < 0.01),AKT基因的表达量与之相反,表现出miR-153和AKT的负调控关系。结果表明,在DBP暴露下miR-153可能通过靶向AKT基因,影响AKT下游相关基因的表达,导致AKT参与的大型溞生命活动失调,本实验为解析DBP对水生动物的毒理机制提供科学参考。
MicroRNAs are involved in the regulation of animal life processes, in-cluding growth, development, biotic and abiotic stress responses. MicroRNAs and target genes have been shown to be involved in the response of aquatic animals to environmental stress. To explore the biological function of miR-153 and the effect of dibutyl phthalate (DBP) exposure on the expres-sion of miR-153 and its target gene AKT in Daphnia magna, we performed alignment of miR-153 sequences of various species. Miranda and Targets can were used to analyze the target gene of miR-153 and perform functional enrichment analysis. The changes of miR-153 and AKT in D. magna after DBP exposure were detected by real-time quantitative PCR. The results showed that the se-quence of miR-153 in 11 species was highly conservative, and 20 bases were completely consistent. The 742 miR-153 targeted genes are mainly concentrated in DNA template, transcriptional regula-tion, redox, signal transduction biological processes. miR-153 targeted genes are involved in the regulation of endocytosis, smooth muscle contraction, cytochrome P450 metabolism of allotropin and other metabolic signaling pathways. After DBP exposure at different concentrations and at dif-ferent times, compared with the control group, the expression of miR-153 in D. magna increased significantly (P < 0.01), and the expression of AKT gene was opposite. It showed a negative regula-tory relationship between miR-153 and AKT. The results showed that miR-153 may affect the ex-pression of AKT downstream-related genes by targeting AKT genes after DBP exposure, leading to an imbalance in the vital activities of D. magna involved in AKT. This experiment provides a scien-tific reference for analyzing the toxicological mechanism of DBP on aquatic animals.

References

[1]  Wang, W., Leung, A.O.W., Chu, L.H. and Wong, M.H. (2018) Phthalates Contamination in China: Status, Trends and Human Exposure—With an Emphasis on Oral Intake. Environmental Pollution, 238, 771-782.
https://doi.org/10.1016/j.envpol.2018.02.088
[2]  Sun, G. and Li, Y. (2019) Exposure to DBP Induces the Toxicity in Early Development and Adverse Effects on Cardiac Development in Zebrafish (Daniorerio). Chemosphere, 218, 76-82.
https://doi.org/10.1016/j.chemosphere.2018.11.095
[3]  Wang, J., Chen, G., Christie, P., Zhang, M., Luo, Y. and Teng, Y. (2015) Occurrence and Risk Assessment of Phthalate Esters (PAEs) in Vegetables and Soils of Suburban Plas-tic Film Greenhouses. Science of the Total Environment, 523, 129-137.
https://doi.org/10.1016/j.scitotenv.2015.02.101
[4]  李磊, 蒋玫, 王云龙. 邻苯二甲酸二丁酯和邻苯二甲酸二辛酯对大黄鱼受精卵及仔鱼的急性毒性效应[J]. 海洋渔业, 2019, 41(3): 346-353.
[5]  Agus, H.H., Erkmen, B., Sümer, S., Sepici-Din?el, A. and Erko?, F. (2015) Impact of DBP on Histology and Expression of HSP 70 in Gill and Liver Tissue of Cyprinus carpio. Molecular Biology Reports, 42, 1409-1417.
https://doi.org/10.1007/s11033-015-3920-8
[6]  Shen, C., Wei, J., Wang, T. and Wang, Y. (2019) Acute Toxicity and Responses of Antioxidant Systems to Dibutyl Phthalate in Neonate and Adult Daphnia Magna. PeerJ, 7, e6584.
https://doi.org/10.7717/peerj.6584
[7]  Wei, J., Shen, Q., Ban, Y., Wang, Y., Shen, C., Wang, T., Zhao, W. and Xie, X. (2018) Characterization of Acute and Chronic Toxicity of DBP to Daphnia magna. Bulletin of Environmental Contamination and Toxicology, 101, 214-221.
https://doi.org/10.1007/s00128-018-2391-8
[8]  Guarnieri, D.J. and Di Leone, R.J. (2008) MicroRNAs: A New Class of Gene Regulators. Annals of Medicine, 40, 197-208.
https://doi.org/10.1080/07853890701771823
[9]  Mandemakers, W., Abuhatzira, L., Xu, H., Caromile, L.A., Hé-bert, S.S., Snellinx, A., Morais, V.A., Matta, S., Cai, T., Notkins, A.L. and De Strooper, B. (2013) Co-Regulation of In-tragenic microRNA miR-153 and Its Host Gene Ia-2 β: Identification of miR-153 Target Genes with Functions Related to IA-2β in Pancreas and Brain. Diabetologia, 256, 1547-1556.
https://doi.org/10.1007/s00125-013-2901-5
[10]  施林生, 黄建飞, 卢辉和, 等. MiR-738通过Wnt信号通路调控斑马鱼心脏发育[J]. 南通大学学报(医学版), 2014, 34(1): 8-10.
[11]  王菊, 赵建军, 马旭. 丙烯酰胺对斑马鱼胚胎发育过程中microRNA表达的影响[J]. 毒理学杂志, 2007, 21(3): 169-172.
[12]  Flynt, A.S., Thatcher, E.J., Burkewitz, K., Li, N., Liu, Y. and Patton, J.G. (2009) miR-8 microRNAs Regulate the Response to Osmotic Stress in Zebrafish Embryos. Journal of Cell Biology, 185, 115-127.
https://doi.org/10.1083/jcb.200807026
[13]  王梦婷, 曹杰宇, 王忠新, 等. MicroRNA参与水生动物环境污染物胁迫应答的研究进展[J]. 生物技术通报, 2021, 37(6): 272-278.
[14]  Li, H., Di, G., Zhang, Y., Xue, R., Zhang, J. and Liang, J. (2019) MicroRNA-155 and microRNA-181a, via HO-1, Participate in Regulating the Immunotoxicity of Cadmium in the Kidneys of Exposed Cyprinus carpio. Fish and Shellfish Immunology, 95, 473-480.
https://doi.org/10.1016/j.fsi.2019.11.010
[15]  Zhou, Z., Wang, L.L., Song, L.S., Liu, R., Zhang, H., Huang, M.M. and Chen, H. (2014) The Identification and Characteristics of Immune-Related MicroRNAs in Haemocytes of Oyster Crassostrea gigas. PLOS ONE, 9, e88397.
https://doi.org/10.1371/journal.pone.0088397
[16]  Shuai, C., Nichols, K.M., Poynton, H.C., et al. (2016) Mi-croRNAs Are Involved in Cadmium Tolerance in Daphnia pulex. Aquatic Toxicology (Amsterdam, Netherlands), 175, 241-248.
https://doi.org/10.1016/j.aquatox.2016.03.023
[17]  Stollewerk A. (2010) The Water Flea Daphnia—A “New” Model System for Ecology and Evolution? Journal of Biology, 9, Article No. 21.
https://doi.org/10.1186/jbiol212
[18]  Guo, G., Zhang, Y., Hu, L. and Bian, X. (2019) MicroRNA-153 Affects Nasopharyngeal Cancer Cell Viability by Targeting TGF-β2. Oncology Letters, 17, 646-651.
https://doi.org/10.3892/ol.2018.9570
[19]  Hennessy, B.T., Smith, D.L., Ram, P.T., Lu, Y. and Mills, G.B. (2005) Exploiting the PI3K/AKT Pathway for Cancer Drug Discovery. Nature Reviews Drug Discovery, 4, 988-1004.
https://doi.org/10.1038/nrd1902
[20]  Kumar, A., Rajendran, V., Sethumadhavan, R. and Purohit, R. (2013) AKT Kinase Pathway: A Leading Target in Cancer Research. Scientific World Journal, 2013, Article ID: 756134.
https://doi.org/10.1155/2013/756134
[21]  Hu, J., Lin, C., Liu, M., Tong, Q., Xu, S., Wang, D. and Zhao, Y. (2018) Analysis of the microRNA Transcriptome of Daphnia pulex during Aging. Gene, 664, 101-110.
https://doi.org/10.1016/j.gene.2018.04.034
[22]  Lyu, K., Zhu, X., Wang, Q., Chen, Y. and Yang, Z. (2013) Cop-per/Zinc Superoxide Dismutase from the Cladoceran Daphnia magna: Molecular Cloning and Expression in Response to Different Acute Environmental Stressors. Environmental Science & Technology, 47, 8887-8893.
https://doi.org/10.1021/es4015212
[23]  王敏. 连续多代暴露于邻苯二甲酸二丁酯对秀丽隐杆线虫的生殖毒性研究[D]: [硕士学位论文]. 遵义: 遵义医科大学, 2021.
[24]  李磊, 蒋玫, 王云龙. 邻苯二甲酸二丁酯和邻苯二甲酸二辛酯对大黄鱼受精卵及仔鱼的急性毒性效应[J]. 海洋渔业, 2019, 41(3): 346-353.
[25]  刘梦瑶, 张新生, 许何丽, 等. hsa-miR-885-5p靶基因预测及功能分析[J]. 社区医学杂志, 2020, 18(24): 1646-1651.
[26]  Zhang, Q.L., Dong, Z.X., Xiong, Y., Li, H.W., Guo, J., Wang, F., Deng, X.Y., Chen, J.Y. and Lin, L.B. (2019) Genome-Wide Tran-scriptional Response of microRNAs to the Benzo(a)pyrene Stress in Amphioxus Branchiostoma belcheri. Chemosphere, 218, 205-210.
https://doi.org/10.1016/j.chemosphere.2018.11.119
[27]  Gao, X., Cong, Y., Yue, J., Xing, Z., Wang, Y. and Chai, X. (2019) Small RNA, Transcriptome, and Degradome Sequencing to Identify Salinity Stress Responsive miRNAs and Target Genes in Dunaliella salina. Journal of Applied Phycology, 31, 1175-1183.
https://doi.org/10.1007/s10811-018-1612-1
[28]  Bhatia, H., Kumar, A., Chapman, J.C. and Mclaughlin, M.J. (2015) Long-Term Exposures to Di-n-butyl Phthalate Inhibit Body Growth and Impair Gonad Development in Juvenile Murray Rainbowfish (Melanotaenia fluviatilis). Journal of Applied Toxicology, 35, 806-816.
https://doi.org/10.1002/jat.3076
[29]  Zheng, Y., Yuan, J., Gu, Z., Yang, G., Li, T. and Chen, J. (2020) Transcrip-tome Alterations in Female Daphnia (Daphnia magna) Exposed to 17β-Estradiol. Environmental Pollution, 261, Article ID: 114208.
https://doi.org/10.1016/j.envpol.2020.114208
[30]  Zhao, G., Zhang, Y., Zhao, Z., Cai, H., Zhao, X., Yang, T., Chen, W., Yao, C., Wang, Z., Wang, Z., Han, C. and Wang, H. (2020) MiR-153 Reduces Stem Cell-Like Phenotype and Tumor Growth of Lung Adenocarcinoma by Targeting Jagged1. Stem Cell Research & Therapy, 11, 170.
https://doi.org/10.1186/s13287-020-01679-7
[31]  鲍培龙, 徐月亮, 王孝彬. miR-153对肺腺癌细胞增殖、侵袭、迁移和凋亡的影响及机制研究[J]. 现代检验医学杂志, 2022, 37(1): 107-113.
[32]  徐启英, 左英, 郭桂兰, 等. miR-153靶向调控GALNT7对宫颈癌细胞增殖、迁移和侵袭能力的影响[J]. 中国高原医学与生物学杂志, 2018, 39(4): 247-251.
[33]  Chen, S., Nichols, K.M., Poynton, H.C. and Sepúlveda, M.S. (2016) MicroRNAs Are Involved in Cadmium Tolerance in Daphnia pulex. Aquatic Toxicology, 175, 241-248.
https://doi.org/10.1016/j.aquatox.2016.03.023
[34]  Guo, M., Wang, Y., Zhao, H., Wang, D., Yin, K., Liu, Y., Li, B. and Xing, M. (2021) Zinc Antagonizes Common Carp (Cyprinus carpio) Intestinal Arsenic Poisoning through PI3K/AKT/mTOR Signaling Cascade and MAPK Pathway. Aquatic Toxicology, 240, Article ID: 105986.
https://doi.org/10.1016/j.aquatox.2021.105986
[35]  Zhou, T., Liu, J., Chan, S. and Wang, W. (2021) Molecular Characterization and Expression Dynamics of Three Key Genes in the PI3K-AKT Pathway Reveal Its Involvement in the Immunotoxicological Responses of the Giant River Prawn Macrobrachium rosenbergii to Acute Ammonia and Nitrite Stress. Ecotoxicology and Environmental Safety, 208, Article ID: 111767.
https://doi.org/10.1016/j.ecoenv.2020.111767
[36]  Steelman, L.S., Stadelman, K.M., Chappell, W.H., Horn, S., B?secke, J., Cervello, M., Nicoletti, F., Libra, M., Stivala, F., Martelli, A.M. and McCubrey, J.A. (2008) AKT as a Therapeutic Target in Cancer. Expert Opinion on Therapeutic Targets, 12, 1139-1165.
https://doi.org/10.1517/14728222.12.9.1139

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133